Spacecraft Adaptive Sliding Mode Attitude Tracking Control Using DGCMG

2011 ◽  
Vol 110-116 ◽  
pp. 5283-5291
Author(s):  
Lei Wang ◽  
Yu Shan Zhao ◽  
Peng Shi

This investigation is concerned with the non-linear multi-in-multi-out tracking control of a spacecraft with Double-gimbaled control moment gyros as actuators. An attitude dynamic model of rigid spacecraft with DGCMG and a kinematics model in terms of Modified Rodriguez parameters are given for the controller development. Then the control objective and system uncertainties in tracking problem are analyzed considering the major elements which work on the control performance such as moment of inertia change, wheel speed drift and external torque. A adaptive sliding mode controller is designed and is proved stable later in which the sliding mode control are used to compensate external torque and un-modeled dynamics while the adaptive parameters are used to estimate inertia and wheel speed on line. And a steering law of parallel mounted DGCMG is illuminated. Finally Monte Carlo simulation is carried out to prove the effectiveness of the controller.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wenguang Zhang ◽  
Wenjun Yi

The finite-time attitude tracking control for gliding-guided projectile with unmatched and matched disturbance is investigated. An adaptive variable observer is used to provide estimation for the unmeasured state which contains unmatched disturbance. Then, an improved adaptive twisting sliding mode algorithm is proposed to compensate for the matched disturbance dynamically with better transient quality. Finally, a proof of the finite-time convergence of the closed-loop system under the disturbance observer and the adaptive twisting sliding mode-based controller is derived using the Lyapunov technique. This attitude tracking control scheme does not require any information on the bounds of uncertainties. Simulation results demonstrate that the proposed method which is able to acquire the minimum possible values of the control gains guaranteeing the finite-time convergence performs well in chattering attenuation and tracking precision.


2020 ◽  
Vol 29 (13) ◽  
pp. 2050212
Author(s):  
Zhi Gao ◽  
Zhihao Zhu ◽  
Yu Guo

For multi-spacecraft with actuator saturation, inertia uncertainties and external disturbances, a distributed finite-time coordinated attitude tracking control problem for the spacecraft with the communication topology containing fewer information paths is investigated. Aiming at reducing the communication path, a class of distributed finite-time state observers is designed. To speed up the convergence rate of the multiple spacecraft system, a fast nonsingular terminal sliding mode function is proposed. Moreover, an adaptive control term is proposed to suppress the impact of the external state-dependent disturbances and unknown time-varying inertia uncertainties. Further considering the actuator saturation owing to its physical limitations, a saturation function is designed. With the distributed finite-time observers, the fast nonsingular terminal sliding mode function, the adaptive update law and the saturation function, a distributed finite-time coordinated attitude tracking saturation controller is designed. Using the proposed controller, the follower can synchronize with the common leader with time-varying trajectory in finite time. Simulation results demonstrate the effectiveness of the designed controller.


Sign in / Sign up

Export Citation Format

Share Document