Using the Simplified 3D DIC Method to Measure the Deformation of 3D Surface

2011 ◽  
Vol 121-126 ◽  
pp. 3945-3949 ◽  
Author(s):  
Shih Heng Tung ◽  
Jui Chao Kuo ◽  
Ming Hsiang Shih ◽  
Wen Pei Sung

In recent years, 2D digital image correlation method (DIC) has been widely used in the measurement of plane strain. However, out-of-plane displacement could be induced during the loading and it would affect the measurement accuracy. Thus, a 3D measurement is necessary. This study utilizes a simplified 3D DIC to measure the geometry of an object before and after deformation. Then the finite element concept is involved to determine the strain after deformation. A flat plate specimen with in-plane and out-of-plane displacement is observed. Both 2D and 3D DIC are used to analyze the strain. The results show that using 3D DIC to measure strain is feasible and with a very good accuracy.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4104
Author(s):  
Nassr Al-Baradoni ◽  
Peter Groche

In this paper we present a novel, cost-effective camera-based multi-axis force/torque sensor concept for integration into metallic load-bearing structures. A two-part pattern consisting of a directly incident and mirrored light beam is projected onto the imaging sensor surface. This allows the capturing of 3D displacements, occurring due to structure deformation under load in a single image. The displacement of defined features in size and position can be accurately analyzed and determined through digital image correlation (DIC). Validation on a prototype shows good accuracy of the measurement and a unique identification of all in- and out-of-plane displacement components under multiaxial load. Measurements show a maximum deviation related to the maximum measured values between 2.5% and 4.8% for uniaxial loads ( and between 2.5% and 10.43% for combined bending, torsion and axial load. In the course of the investigations, the measurement inaccuracy was partly attributed to the joint used between the sensor parts and the structure as well as to eccentric load.


Author(s):  
Wentao Yan ◽  
Feng Lin

Strain monitoring is very important in the manufacturing, assembling, installation and servicing processes in both mechanical and civil engineering fields. Two-dimensional digital image correlation is a simple, efficient strain monitoring method, but one major bottleneck is the unacceptable error due to the unavoidable out-of-plane motions of the object in practice. We propose a “self-correction” method: employing the originally extracted strain values in different directions to correct the errors due to out-of-plane motions. It is applicable to many engineering applications with known relationship of strains in different directions. A uniaxial tension test was conducted to demonstrate the effectiveness and practicality of this self-correction method. Compared with other correction methods, this method is not only simpler but also more efficient in correcting errors due to the lens distortion caused by self-heating. Both the experiment and theoretical analyses demonstrate that this self-correction method maintains the high accuracy of the digital image correlation method.


Sign in / Sign up

Export Citation Format

Share Document