Gearbox Fault Diagnosis Based on AIS-ICA Algorithm

2011 ◽  
Vol 121-126 ◽  
pp. 4476-4480
Author(s):  
Jin Ying Huang ◽  
Hong Xia Pan ◽  
Ya Hui Lu ◽  
Yue Li

Immune theory is applied to independent component analysis in this paper. By elaborated on blind source separation procedure, the blind source separation based on immune optimization algorithm is put forward, that is AIS-ICA algorithm. The paper carried out simulation experiments of mixing and separation for four specific signals. The experimental results show that the convergence speed and separation precision is high, and it has good stability. The new algorithm is used to gearbox vibration signals for blind source separation and fault diagnosis, fault information carried by vibration signals enhanced. Results show that the algorithm used to separate vibration signals of gearbox can greatly enhance fault information, reducing difficulty of gearbox fault diagnosis.

2009 ◽  
Vol 419-420 ◽  
pp. 801-804
Author(s):  
Xiang Yang Jin ◽  
Shi Sheng Zhong

The effectiveness of separation and identification of mechanical signals vibrations is crucial to successful fault diagnosis in the condition monitoring and diagnosis of complex machines.Aeroengine vibration signals always include many complicated components, blind source separation (BSS) provides a efficient way to separate the independent component.In order to get the most effective algorithm of vibration signal separation,experiment has been done to acquire plenty of multi-mixed rotor vibration signals,three sets of vibration data generated from aeroengine rotating shafts were separated from the synthetic vibration signal. The results prove that blind source separation is effective and can be applied for vibration signal processing and fault diagnosis of aeroengine.


2012 ◽  
Vol 542-543 ◽  
pp. 234-237
Author(s):  
Ping Wang ◽  
De Xiang Zhang ◽  
Yan Li Liu

This paper applies the empirical mode decomposition (EMD) methods to gearbox vibration signal analysis capture from vibrating acceleration sensor for gearbox fault diagnosis. The original modulation fault vibration signals are firstly decomposed into a number of intrinsic mode function (IMF) by the EMD method. Then the fault information diagnosis of the gearbox vibration signals can be extracted from the coefficient-energy value of intrinsic mode function. Experiment result has shown the feasibility and efficiency of the EMD algorithms and energy characteristic method in fault diagnosis and fault message abstraction. It is significant for the monitor operating state of gearbox and detects incipient faults as soon as possible.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Feng Miao ◽  
Rongzhen Zhao

When the rotary machinery is running, the vibration signals measured with sensors are mixed with all vibration sources and contain very strong noises. It is difficult to separate mixed signals with conventional methods of signal processing, so there are difficulties in machine health monitoring and fault diagnosis. The principle and method of blind source separation were introduced, and it was pointed out that the blind source separation algorithm was invalid in strong pulse noise environment. In these environments, the vibration signals are first denoised with the synchronous cumulative average noise reduction (SCA) method, and the denoised signals were separated with the improved fast independent component analysis (FastICA) algorithm. The results of simulation test and rotor fault experiments demonstrate that the novel method can effectively extract fault features, certifying its superiority in comparison with previous methods. Therefore, it is likely to be useful and practical in the fault detection area, especially under the condition of strong noise and vibration interferences.


2011 ◽  
Vol 86 ◽  
pp. 180-183
Author(s):  
Yan Bin Lei ◽  
Zhi Gang Chen ◽  
Hai Ou Liu

A new blind source separation (BSS) algorithm used for separating mixed gearbox signals is proposed in this paper. Firstly, whiten the observed signals, and then diagonalize the second- and higher-order cumulant matrix to get an orthogonal separation matrix. The feasibility of the algorithm is validated through separating the mechanical simulation signals and the gearbox vibration signals. The algorithm can successfully identified the failure source of the gearbox and provides a new method to a gearbox fault.


2021 ◽  
Author(s):  
◽  
Timothy Sherry

<p>An online convolutive blind source separation solution has been developed for use in reverberant environments with stationary sources. Results are presented for simulation and real world data. The system achieves a separation SINR of 16.8 dB when operating on a two source mixture, with a total acoustic delay was 270 ms. This is on par with, and in many respects outperforms various published algorithms [1],[2]. A number of instantaneous blind source separation algorithms have been developed, including a block wise and recursive ICA algorithm, and a clustering based algorithm, able to obtain up to 110 dB SIR performance. The system has been realised in both Matlab and C, and is modular, allowing for easy update of the ICA algorithm that is the core of the unmixing process.</p>


2019 ◽  
Vol 9 (9) ◽  
pp. 1852 ◽  
Author(s):  
Hua Ding ◽  
Yiliang Wang ◽  
Zhaojian Yang ◽  
Olivia Pfeiffer

Mining machines are strongly nonlinear systems, and their transmission vibration signals are nonlinear mixtures of different kinds of vibration sources. In addition, vibration signals measured by the accelerometer are contaminated by noise. As a result, it is inefficient and ineffective for the blind source separation (BSS) algorithm to separate the critical independent sources associated with the transmission fault vibrations. For this reason, a new method based on wavelet de-noising and nonlinear independent component analysis (ICA) is presented in this paper to tackle the nonlinear BSS problem with additive noise. The wavelet de-noising approach was first employed to eliminate the influence of the additive noise in the BSS procedure. Then, the radial basis function (RBF) neural network combined with the linear ICA was applied to the de-noised vibration signals. Vibration sources involved with the machine faults were separated. Subsequently, wavelet package decomposition (WPD) was used to extract distinct fault features from the source signals. Lastly, an RBF classifier was used to recognize the fault patterns. Field data acquired from a mining machine was used to evaluate and validate the proposed diagnostic method. The experimental analysis results show that critical fault vibration source component can be separated by the proposed method, and the fault detection rate is superior to the linear ICA based approaches.


2013 ◽  
Vol 347-350 ◽  
pp. 430-433
Author(s):  
Wen Bin Zhang ◽  
Jia Xing Zhu ◽  
Ya Song Pu ◽  
Yan Jie Zhou

In this paper, a new comprehensive gearbox fault diagnosis method was proposed based on rank-order morphological filter, ensemble empirical mode decomposition (EEMD) and grey incidence. Firstly, the rank-order morphological filter was defined and the line structure element was selected for rank-order morphological filter to de-noise the original acceleration vibration signal. Secondly, de-noised gearbox vibration signals were decomposed into a finite number of stationary intrinsic mode functions (IMF) and some IMFs containing the most dominant fault information were calculated the energy distribution. Finally, due to the grey incidence has good classify capacity for small sample pattern identification; these energy distributions could serve as the feature vectors, the grey incidence of different gearbox vibration signals was calculated to identify the fault pattern and condition. Practical results show that the proposed method can be used in gear fault diagnosis effectively.


Sign in / Sign up

Export Citation Format

Share Document