Localization Algorithm Based on DV-HOP for Wireless Sensor Network

2011 ◽  
Vol 128-129 ◽  
pp. 909-913
Author(s):  
Yu Hu ◽  
Xue Mei Li

An improved DV-HOP localization algorithm is proposed in the paper, aiming at the traditional DV-HOP localization algorithm. The improved algorithm introduces threshold M, it uses the weighted average hop distances of anchor nodes within M hops to calculate the average hop distance of unknown nodes. In addition, the positioning results are corrected in the improved algorithm. The simulation results show that the improved localization algorithm effectively improves the positioning accuracy compared with the traditional DV-HOP localization algorithm, it is an effective localization algorithm for the wireless sensor networks.

2012 ◽  
Vol 442 ◽  
pp. 360-365 ◽  
Author(s):  
Yang Jun Zhong

For the DV-Hop algorithm of wireless sensor networks,there is an error arising problem that anchor nodes and location node hop distance is only an approximate calculation. A method based on the original Algorithm introducing RSSI ranging technique is proposed.Using RSSI ranging technology,we accord that if the anchor nodes is only a hop away from the location node,then decide whether using the DV-Hop algorithm to approach to the approximate distance between them. Simulation results show that the algorithm can effectively improve the error problems of calculating the hop distance between the anchor nodes and the location nodes, meanwhile improve the positioning accuracy of the node.


2013 ◽  
Vol 303-306 ◽  
pp. 201-205
Author(s):  
Shao Ping Zhang

Localization technology is one of the key supporting technologies in wireless sensor networks. In this paper, a collaborative multilateral localization algorithm is proposed to localization issues for wireless sensor networks. The algorithm applies anchor nodes within two hops to localize unknown nodes, and uses Nelder-Mead simplex optimization method to compute coordinates of the unknown nodes. If an unknown node can not be localized through two-hop anchor nodes, it is localized by anchor nodes and localized nodes within two hops through auxiliary iterative localization method. Simulation results show that the localization accuracy of this algorithm is very good, even in larger range errors.


2014 ◽  
Vol 716-717 ◽  
pp. 1322-1325
Author(s):  
Jin Tao Lin ◽  
Guang Yu Fan ◽  
Wen Hong Liu ◽  
Ying Da Hu

Sensor positioning is a fundamental block in various location-dependent applications of wireless sensor networks. In order to improve the positioning accuracy without increasing the complex and cost of sensor nodes, an improve sensor positioning method is proposed for wireless sensor networks. In the method, after receiving the broadcasting message of the neighboring anchor nodes, the sensor nodes calculate a modifying factor of the change of the signal strength. And they modify the distances between themselves and neighboring anchor nodes with the modifying factor. Simulation results show that the proposed method can obtain a high positioning accuracy.


2016 ◽  
Vol 12 (11) ◽  
pp. 80 ◽  
Author(s):  
Songbo Ji

<p class="Abstract"><span lang="EN-US">Aimed at solving the problem of local divergence and low data accuracy, this paper introduces a new Time Difference of Arrival(TDOA)-based localization algorithm (TBL) for the large-scale, high-density wireless sensor networks which are designed for real-time surveillance and unexpected incidents management. In particular, several means to improve the accuracy of distance measurement are investigated, and the TDOA method, based on the sound wave and electromagnetic wave to locate in the large-scale WSN, is discussed. Also, the well-designed circular location process has the advantage of better positioning accuracy and coverage percentage. Simulation results have confirmed the effectiveness of the formed TBL algorithm.</span></p>


2017 ◽  
Vol 13 (10) ◽  
pp. 4 ◽  
Author(s):  
Xin Qiao ◽  
Han-Sheng Yang ◽  
Zheng-Chuang Wang

Wireless sensor networks are more and more important for various applications. Localization plays an important role in WSN. In this article,<strong> </strong>Aiming at the large errors that the DV—Hop localization algorithm have in net topology with randomly-distributed nodes, this paper proposed a CLDV-Hop algorithm in DV-Hop based on modifying average hopping distances. Firstly, hop count threshold is set to optimize the anchor node when data exchange. Then, according to the minimum mean square criteria and unknown nodes nearest three anchor nodes weighted average hop distance are selected as its average hop distance. Finally, L-M algorithm is used to optimize the coordinate of unknown node estimated by least squares. The simulation results show that, without increasing the overhead and the same conditions as the simulation environment, CLDV-Hop algorithm has higher positioning accuracy than existing improved algorithms, and compared with DV-Hop algorithm accuracy is improved by about 33% - 41%.


2014 ◽  
Vol 1022 ◽  
pp. 396-401
Author(s):  
Hang Xia Zhou ◽  
Chen Cui ◽  
Jia Jun Ye

Regarding the conventional DV-Hop algorithm easily caused big error in a network topology scenario, this paper proposes an improved DV-Hop localization algorithm comprehensive consideration of all anchor nodes average one-hop distance and normalized weighted, use anchor nodes as unknown nodes calculating error and use the error optimizing accuracy. Theoretical analysis and simulation results show that the proposed algorithm has better locating performance in locating precision and precision stability.


2015 ◽  
Vol 738-739 ◽  
pp. 401-404
Author(s):  
Dong Yao Zou ◽  
Chen Li ◽  
Teng Fei Han

The node localization is one of the key technologies in wireless sensor networks. To the accurate positioning of the nodes as the premise and foundation, this paper puts forward the centroid localization algorithm based on grid distribution. The centroid algorithms is simple and universal application, which is classical algorithm without measuring its algorithm. Grid distribution to avoid anchor nodes are distributed unevenly and empty phenomenon, improving the positioning accuracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Jiang ◽  
Xin Wang ◽  
Li Zhang

According to the application of range-free localization technology for wireless sensor networks (WSNs), an improved localization algorithm based on iterative centroid estimation is proposed in this paper. With this methodology, the centroid coordinate of the space enclosed by connected anchor nodes and the received signal strength indication (RSSI) between the unknown node and the centroid are calculated. Then, the centroid is used as a virtual anchor node. It is proven that there is at least one connected anchor node whose distance from the unknown node must be farther than the virtual anchor node. Hence, in order to reduce the space enclosed by connected anchor nodes and improve the location precision, the anchor node with the weakest RSSI is replaced by this virtual anchor node. By applying this procedure repeatedly, the localization algorithm can achieve a good accuracy. Observing from the simulation results, the proposed algorithm has strong robustness and can achieve an ideal performance of localization precision and coverage.


The fundamental capacity of a sensor system is to accumulate and forward data to the destination. It is crucial to consider the area of gathered data, which is utilized to sort information that can be procured using confinement strategy as a piece of Wireless Sensor Networks (WSNs).Localization is a champion among the most basic progressions since it agreed as an essential part in various applications, e.g., target tracking. If the client can't gain the definite area information, the related applications can't be skillful. The crucial idea in most localization procedures is that some deployed nodes with known positions (e.g., GPS-equipped nodes) transmit signals with their coordinates so as to support other nodes to localize themselves. This paper mainly focuses on the algorithm that has been proposed to securely and robustly decide thelocation of a sensor node. The algorithm works in two phases namely Secure localization phase and Robust Localization phase. By "secure", we imply that malicious nodes should not effectively affect the accuracy of the localized nodes. By “robust”, we indicate that the algorithm works in a 3D environment even in the presence of malicious beacon nodes. The existing methodologies were proposed based on 2D localization; however in this work in addition to security and robustness, exact localization can be determined for 3D areas by utilizing anefficient localization algorithm. Simulation results exhibit that when compared to other existing algorithms, our proposed work performs better in terms of localization error and accuracy.


Author(s):  
Manoshri A. Ghawade ◽  
Dr. Sheetal S. Dhande

Intrusion detection in Wireless Sensor Network (WSN) is of practical interest in many applications such as detecting an intruder in a battlefield. The intrusion detection is defined as a mechanism for a WSN to detect the existence of inappropriate, incorrect, or anomalous moving attackers. In this paper, we consider this issue according to heterogeneous WSN models. Furthermore, we consider two sensing detection models: single-sensing detection and multiple-sensing detection... Our simulation results show the advantage of multiple sensor heterogeneous WSNs.


Sign in / Sign up

Export Citation Format

Share Document