MHD Flow of Shear-Thinning Fluid over a Rotating Disk with Heat Transfer

2011 ◽  
Vol 130-134 ◽  
pp. 3599-3602
Author(s):  
Chun Ying Ming ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang

This paper studied the Magneto hydrodynamic (MHD) flow and heat transfer of an electrically conducting non-Newtonian fluid over a rotating disk in the presence of a uniform magnetic field. The steady, laminar and axial-symmetric flow is driven solely by the rotating disk, and the incompressible fluid obeys the inelastic Ostwald de-Waele power-law model. The governing differential equations were reduced to a set of ordinary differential equations by utilizing the generalized Karman similarity transformation. The nonlinear two-point boundary value problem is solved by multi-shooting method. Numerical results show that the magnetic parameter and the power-law index have significant effects on the swirling flow and heat transfer.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bai Yu ◽  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe nanofluids owing to their alluring attributes like enhanced thermal conductivity and better heat transfer characteristics have a vast variety of applications ranging from space technology to nuclear reactors etc. The present study highlights the Ostwald-de-Waele nanofluid flow past a rotating disk of variable thickness in a porous medium with a melting heat transfer phenomenon. The surface catalyzed reaction is added to the homogeneous-heterogeneous reaction that triggers the rate of the chemical reaction. The added feature of the variable thermal conductivity and the viscosity instead of their constant values also boosts the novelty of the undertaken problem. The modeled problem is erected in the form of a system of partial differential equations. Engaging similarity transformation, the set of ordinary differential equations are obtained. The coupled equations are numerically solved by using the bvp4c built-in MATLAB function. The drag coefficient and Nusselt number are plotted for arising parameters. The results revealed that increasing surface catalyzed parameter causes a decline in thermal profile more efficiently. Further, the power-law index is more influential than the variable thickness disk index. The numerical results show that variations in dimensionless thickness coefficient do not make any effect. However, increasing power-law index causing an upsurge in radial, axial, tangential, velocities, and thermal profile.


2014 ◽  
Vol 501-504 ◽  
pp. 2081-2084
Author(s):  
Chun Ying Ming ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang

The flow of an incompressible viscous power-law fluid over an infinite rotating disk with uniform suction or injection is studied. The governing differential equations, which are partial and coupled, are simplified to a set of ordinary differential equations by generalized Karman similarity transformation. Numerical solutions of the non-linear two point boundary value problem are obtained by multi-shooting method. The effects of the power-law index and the porous parameter on the velocity fields are discussed for shear thinning fluids.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 323-336 ◽  
Author(s):  
Zivojin Stamenkovic ◽  
Dragisa Nikodijevic ◽  
Milos Kocic ◽  
Jelena Nikodijevic

The paper investigates the magnetohydrodynamic flow of two immiscible, electrically conducting fluids between isothermal and insulated moving plates in the presence of an applied electric and inclined magnetic field with the effects of induced magnetic field. Partial differential equations governing the flow and heat transfer and magnetic field conservation are transformed to ordinary differential equations and solved exactly in both fluid regions, under physically appropriate boundary and interface conditions. Closed-form expressions are obtained for the non-dimensional velocity, non-dimensional induced magnetic field and nondimensional temperature. The analytical results for various values of the Hartmann number, the angle of magnetic field inclination, loading parameter and the ratio of plates? velocities are presented graphically to show their effect on the flow and heat transfer characteristics.


2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


2013 ◽  
Vol 17 (2) ◽  
pp. 525-532
Author(s):  
Nor Yacob ◽  
Anuar Ishak ◽  
Ioan Pop

An analysis is carried out for the steady two-dimensional mixed convection flow adjacent to a stretching vertical sheet immersed in an incompressible electrically conducting micropolar fluid. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the leading edge. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically using a finite difference scheme known as the Keller box method. The effects of magnetic and material parameters on the flow and heat transfer characteristics are discussed. It is found that the magnetic field reduces both the skin friction coefficient and the heat transfer rate at the surface for any given K and ?. Conversely, both of them increase as the material parameter increases for fixed values of M and ?.


2013 ◽  
Vol 18 (3) ◽  
pp. 779-791 ◽  
Author(s):  
K.V. Prasad ◽  
K. Vajravelu ◽  
I. Pop

Abstract The boundary layer flow and heat transfer of a viscous fluid over a nonlinear permeable shrinking sheet in a thermally stratified environment is considered. The sheet is assumed to shrink in its own plane with an arbitrary power-law velocity proportional to the distance from the stagnation point. The governing differential equations are first transformed into ordinary differential equations by introducing a new similarity transformation. This is different from the transform commonly used in the literature in that it permits numerical solutions even for asymptotically large values of the power-law index, m. The coupled non-linear boundary value problem is solved numerically by an implicit finite difference scheme known as the Keller- Box method. Numerical computations are performed for a wide variety of power-law parameters (1 < m < 100,000) so as to capture the effects of the thermally stratified environment on the velocity and temperature fields. The numerical solutions are presented through a number of graphs and tables. Numerical results for the skin-friction coefficient and the Nusselt number are tabulated for various values of the pertinent parameters.


Author(s):  
Khaled J. Hammad

The impact of flow inertia on flow and heat transfer in suddenly expanding annular pipe flows of a shear-thinning non-Newtonian fluid is studied within the steady laminar flow regime. The equations governing conservation of mass, momentum, and energy, along with the power-law constitutive model are numerically solved using a finite-difference numerical scheme. The influence of inflow inertia, annular-nozzle-diameter-ratio, k, power-law index, n, and Prandtl numbers, is reported for: Re = {50, 100}, k = {0, 0.5}; n = {1, 0.6}; and Pr = {1, 10, 100}. Heat transfer augmentation, downstream the plane of expansion, is only observed for Pr = 10 and 100. The extent and intensity of recirculation in the corner region, increases with inflow inertia. Higher Reynolds and Prandtl numbers, power-law index values, and annular diameter ratios, in general, reflect a more dramatic heat transfer augmentation downstream of the expansion plane.


Sign in / Sign up

Export Citation Format

Share Document