Determination of Material Parameters in the Chaboche Unified Viscoplasticty Model

2009 ◽  
Vol 16-19 ◽  
pp. 955-959 ◽  
Author(s):  
Yun Peng Gong ◽  
Christopher Hyde ◽  
Wei Sun ◽  
Thomas H. Hyde

An experimental programme of cyclic mechanical testing of a 316 stainless steel, at temperatures up to 600°C, under isothermal conditions, for the identification of material constitutive constants, has been carried out using a thermo-mechanical fatigue (TMF) test machine with induction coil heating. The constitutive model adopted is a modified Chaboche unified viscoplasticity model, which can deal with both cyclic effects, such as combined isotropic and kinematic hardening, and rate-dependent effects, associated with viscoplasticity. The characterisation of 316 stainless steel is presented and compared to results from cyclic isothermal tests. A least squares optimisation algorithm has been developed and implemented for determining the material constants in order to further improve the general fit of the model to experimental data, using the initially obtained material constants as the starting point in this optimisation process. The model predictions using both the initial and optimised material constants are compared to experimental data.

2013 ◽  
Vol 457-458 ◽  
pp. 185-190 ◽  
Author(s):  
Fu Qiang Yang ◽  
He Xue ◽  
Ling Yan Zhao ◽  
Jin Tian

The material constants calculation models for hyperbolic-sine creep model were proposed. The material constants used in hyperbolic-sine creep model for 316 stainless steel were calculated due to the models proposed and experimental data in the temperature range from 873K to 1023K. The relationships between material constants of 316 stainless steel creep model and temperature were obtained by curve fitting. The creep rate predict model of 316 stainless steel with only stress and temperature was also developed, the creep rates predicted were in good agreement with experimental data.


2006 ◽  
Vol 62 (6) ◽  
pp. 1025-1030 ◽  
Author(s):  
Razvan Caracas ◽  
Renata M. Wentzcovitch

Density functional theory is used to determine the possible crystal structure of the CaSiO3 perovskites and their evolution under pressure. The ideal cubic perovskite is considered as a starting point for studying several possible lower-symmetry distorted structures. The theoretical lattice parameters and the atomic coordinates for all the structures are determined, and the results are discussed with respect to experimental data.


Author(s):  
Luis A. Varela J. ◽  
Calvin M. Stewart

Hastelloy X and stainless steel 304 are alloys widely used in industrial gas turbines components, petrochemical industry and energy generation applications; In the Pressure Vessel and Piping (PVP) industries they are used in nuclear and chemical reactors, pipes and valves applications. Hastelloy X and stainless steel 304 are favored for these types of applications where elevated temperatures are preferred for better systems’ efficiencies; they are favored due to its high strength and corrosion resistance at high temperature levels. A common characteristic of these alloys, is its rate-dependent mechanical behavior which difficult the prediction of the material response for design and simulation purposes. Therefore, a precise unified viscoplastic model capable to describe Hastelloy X and stainless steel 304 behaviors under a variety of loading conditions at high temperatures is needed to allow a better and less conservative design of components. Numerous classical unified viscoplastic models have been proposed in literature, to predict the inelastic behavior of metals under extreme environments. Based on Miller and Walker classical unified constitutive models a novel hybrid unified viscoplastic constitutive model is introduced in the present work, to describe the inelastic behavior caused by creep and fatigue effects at high temperature. The presented hybrid model consists of the combination of the best aspects of Miller and Walker model constitutive equations, with the addition of a damage rate equation which provides a description of the damage evolution and rupture prediction capabilities for Hastelloy X and stainless steel 304. A detailed explanation on the meaning of each material constant is provided, along with its impact on the hybrid model behavior. Material constants were calculated using the recently developed Material Constant Heuristic Optimizer (MACHO) software, to ensure the use of the optimal material constants values. This software uses the simulated annealing algorithm to determine the optimal material constants in a global surface, by comparing numerical simulations to an extensive database of experimental data. To validate the capabilities of the proposed hybrid model, numerical simulation results are compared to a broad range of experimental data at different stress levels and strain amplitudes; besides the consideration of two alloys in the present work, would demonstrate the model’s capabilities and flexibility to model multiple alloys behavior. Finally a quantitative analysis is provided to determine the percentage error and coefficient of determination between the experimental data and numerical simulation results to estimate the efficiency of the proposed hybrid model.


2021 ◽  
Author(s):  
Charles R. Krouse ◽  
Grant O. Musgrove ◽  
Taewoan Kim ◽  
Seungmin Lee ◽  
Muhyoung Lee ◽  
...  

Abstract The Chaboche model is a well-validated non-linear kinematic hardening material model. This material model, like many models, depends on a set of material constants that must be calibrated for it to match the experimental data. Due to the challenge of calibrating these constants, the Chaboche model is often disregarded. The challenge with calibrating the Chaboche constants is that the most reliable method for doing the calibration is a brute force approach, which tests thousands of combinations of constants. Different sampling techniques and optimization schemes can be used to select different combinations of these constants, but ultimately, they all rely on iteratively selecting values and running simulations for each selected set. In the experience of the authors, such brute force methods require roughly 2,500 combinations to be evaluated in order to have confidence that a reasonable solution is found. This process is not efficient. It is time-intensive and labor-intensive. It requires long simulation times, and it requires significant effort to develop the accompanying scripts and algorithms that are used to iterate through combinations of constants and to calculate agreement. A better, more automated method exists for calibrating the Chaboche material constants. In this paper, the authors describe a more efficient, automated method for calibrating Chaboche constants. The method is validated by using it to calibrate Chaboche constants for an IN792 single-crystal material and a CM247 directionally-solidified material. The calibration results using the automated approach were compared to calibration results obtained using a brute force approach. It was determined that the automated method achieves agreeable results that are equivalent to, or supersede, results obtained using the conventional brute force method. After validating the method for cases that only consider a single material orientation, the automated method was extended to multiple off-axis calibrations. The Chaboche model that is available in commercial software, such as ANSYS, will only accept a single set of Chaboche constants for a given temperature. There is no published method for calibrating Chaboche constants that considers multiple material orientations. Therefore, the approach outlined in this paper was extended to include multiple material orientations in a single calibration scheme. The authors concluded that the automated approach can be used to successfully, accurately, and efficiently calibrate multiple material directions. The approach is especially well-suited when off-axis calibration must be considered concomitantly with longitudinal calibration. Overall, the automated Chaboche calibration method yielded results that agreed well with experimental data. Thus, the method can be used with confidence to efficiently and accurately calibrate the Chaboche non-linear kinematic hardening material model.


1990 ◽  
Vol 112 (3) ◽  
pp. 240-250 ◽  
Author(s):  
R. Gomuc ◽  
T. Bui-Quoc ◽  
A. Biron ◽  
M. Bernard

A phenomenological approach, already used for other materials, is applied for the prediction of the behavior of 316 stainless steel under fatigue, creep or combined fatigue-creep loadings. The approach is based on the reduction of either the fatigue limit or the creep strength due to damage accumulation. For multilevel loading, an interaction parameter is introduced to account for the interaction effect between two different loading levels. Some particular aspects concerning the application of the procedure are discussed and the life predictions are compared with those obtained by some other techniques. The essential characteristic of the proposed approach is to provide a reasonably good prediction of life for the material subjected to the prescribed loadings using material constants which are determined through minimal experimental data.


1985 ◽  
Vol 107 (4) ◽  
pp. 286-292 ◽  
Author(s):  
Y. Ohashi ◽  
E. Tanaka ◽  
M. Ooka

To elucidate the plastic behavior of metals under out-of-phase strain cycles, a series of experiments was performed on square strain trajectories in a vector space of deviatoric strain by applying combined axial force and torque to thin-walled tubular specimens of type 316 stainless steel. It was confirmed that strain hardening under out-of-phase cycles is much more significant than that under simple cycles. Though the combined isotropic-kinematic hardening model based on the concept of a nonhardening strain region proposed by Ohno gave qualitatively better predictions than the kinematic hardening model by Oak Ridge National Laboratory, there was still a considerable discrepancy between the former theory and the experiment.


Author(s):  
Luis A. Varela ◽  
Calvin M. Stewart

Hastelloy X (HX) and 304 stainless steel (304SS) are widely used in the pressure vessel and piping industries, specifically in nuclear and chemical reactors, pipe, and valve applications. Both alloys are favored for their resistance to extreme environments, although the materials exhibit a rate-dependent mechanical behavior. Numerous unified viscoplastic models proposed in literature claim to have the ability to describe the inelastic behavior of these alloys subjected to a variety of boundary conditions; however, typically limited experimental data are used to validate these claims. In this paper, two unified viscoplastic models (Miller and Walker) are experimentally validated for HX subjected to creep and 304SS subjected to strain-controlled low cycle fatigue (LCF). Both constitutive models are coded into ansys Mechanical as user-programmable features. Creep and fatigue behavior are simulated at a broad range of stress levels. The results are compared to an exhaustive database of experimental data to fully validate the capabilities and performance of these models. Material constants are calculated using the recently developed Material Constant Heuristic Optimizer (macho) software. This software uses the simulated annealing algorithm to determine the optimal material constants through the comparison of simulations to a database of experimental data. A qualitative and quantitative discussion is presented to determine the most suitable model to predict the behavior of HX and 304SS.


Sign in / Sign up

Export Citation Format

Share Document