Intermittent Faults Diagnosis in Wireless Sensor Networks

2012 ◽  
Vol 160 ◽  
pp. 318-322
Author(s):  
Yin Qiu Sun ◽  
Hai Lin Feng

Sensor node intermittent faults which sometimes behave as fault-free are common in wireless sensor networks. Intermittent faults also affect network performance and faults detection accuracy, so it is important to diagnose the intermittent faulty nodes accurately. This paper proposes a distributed clustering intermittent faults diagnosis method. First, the network is divided into several clusters with the cluster heads should be diagnosed as good. Then, the cluster members are diagnosed by their cluster head. In order to improve the validity of proposed diagnose method, a strategy which collect data for many times is adopted. Analysis of fault diagnosable is given, and simulation results indicate the proposed algorithm has high fault detection accuracy.

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 403 ◽  
Author(s):  
Goran Popovic ◽  
Goran Djukanovic ◽  
Dimitris Kanellopoulos

Clustering achieves energy efficiency and scalable performance in wireless sensor networks (WSNs). A cluster is formed of several sensor nodes, one of them selected as the cluster head (CH). A CH collects information from the cluster members and sends aggregated data to the base station or another CH. In such a hierarchical WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. The mobility of sensor nodes can improve network performance and prolong network lifetime. This paper presents the idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network is reduced and the network lifetime is extended. The positioning of CHs is made in each round based on a selfish herd hypothesis, where the leader retreats to the center of gravity. Based on this idea, the CH-active algorithm is proposed in this study. Simulation results show that this algorithm has benefits in terms of network lifetime and in the prolongation of the duration of network stability period.


Author(s):  
Pooja Chaturvedi ◽  
Ajai Kumar Daniel

Wireless sensor networks have gotten significant attention in recent times due to their applicability in diverse fields. Energy conservation is a major challenge in wireless sensor networks. Apart from energy conservation, monitoring quality of the environmental phenomenon is also considered a major issue. The approaches that addressed both these problems are of great significance. One such approach is node scheduling, which aims to divide the node set into a number of subsets such that each subset can monitor a given set of points known as targets. The chapter proposes a priority coding-based cluster head selection approach as an extension of the energy efficient coverage protocol (EECP). The priority of the nodes is determined on the basis of residual energy (RE), distance (D), noise factor (N), node degree (Nd), and link quality (LQ). The analytical results show that the proposed protocol improves the network performance by reducing the overhead by a factor of 70% and hence reduces the energy consumption by a factor of 70%.


2019 ◽  
Vol 15 (1) ◽  
pp. 155014771882400
Author(s):  
Qiong Zhang ◽  
Wenzheng Zhang

Selective forwarding attack in wireless sensor networks shows great impact on network performance and consumes limited energy resource. In previous countermeasures, it is assumed that all nodes in the communication range can detect misbehaviors of the attacker. However, as wireless devices require certain signal-to-noise ratio to receive frames correctly, and interference among nodes is inevitable in densely deployed wireless sensor networks, it is very difficult for previous approaches to detect misbehaviors accurately. In this article, a scheme named E-watchdog is proposed to improve accuracy of selective forwarding attack detection. Detection agents that are closer to the attacker are used to detect misbehaviors, which can improve the detection accuracy and reduce the false alarm rate effectively. Moreover, to prevent collaborative selective forwarding attack, E-watchdog uses reports from more than one detection agents. Fake reports from attackers are filtered out through an election algorithm. Simulation results show that the E-watchdog reduces the false detection rate by 25% and improves the detection accuracy by 10% on the premise of increasing negligible energy consumption.


2012 ◽  
Vol 226-228 ◽  
pp. 1807-1810 ◽  
Author(s):  
Shou Zhi Huang ◽  
Xue Zeng Zhao

Wireless sensor networks (WSNs) based on ZigBee technology are currently popular low-energy, low-cost, short-distance communication technologies that can be applied in many areas, such as industry, environment, agriculture, etc. Energy efficiency is one of the most important research points for WSNs. In this paper, we analyze the existing WSNs protocols, especially LEACH, and propose an energy-efficient cluster head and router selecting protocol (EECRS). EECRS combines both cluster-based and energy-threshold routing protocols to balance the energy consumption of the sensor nodes in the whole network in order to extend the network lifetime. And through the simulation via NS2 software, it is shown that EECRS improves the network performance, network lifetime and data received per energy mount consumption, compared with LEACH protocol.


2013 ◽  
Vol 756-759 ◽  
pp. 1413-1417
Author(s):  
Yun Zhu ◽  
Jie Gao ◽  
Lin Zhang ◽  
Shao Lan Sun

Wireless sensor networks are formed by connected sensors that each have the ability to collect, process, and store environmental information as well as communicate with others via inter-sensor wireless communication. The many-to-one communication pattern used by sensor nodes in most of the data gathering applications leads to such unbalanced energy consumption. Cluster-based protocols attempt to solve this problem by load balancing within the cluster and rotating the job of cluster head every few rounds. In this paper, in order to achieve efficient utilization of wireless resources, we propose an opportunistic network-coded cooperative multicast scheme, which can select appropriate relays by synthetically considering location and instantaneous channel state information to improve the network performance than direct multicast with non additional power consumption.


2021 ◽  
Vol 17 (4) ◽  
pp. 16-28
Author(s):  
Chinmaya Kumar Nayak ◽  
Satyabrata Das

Wireless sensor networks are widely utilized. In the network of wireless sensors, the nodes of sensors normally disseminated arbitrarily are conditional on the method preferred to realize the sensor network. Primarily, the lifespan of a sensor node depends on the active node numbers along with the network connectivity. When a sensor node runs out of power, the sensor node dies too early, affecting network performance. Therefore, an energy hole will be formed with the network. To avoid the problem of energy holes, a number of rules are already proposed. This paper proposed a new method to resolve the problem of energy holes in wireless sensor networks and maximizes the useful life of the network through a different way of cluster head selection using asymmetrical clustering method. This paper proposed PE (probability enhancement) method for choosing the cluster head, which gives improved output compared to LEACH as well as PEGASIS protocol. The result of simulation is performed with MATLAB, and it appears that the projected scheme works better than the previous scheme.


Sign in / Sign up

Export Citation Format

Share Document