Implementation of Non-Destructive Impact Hammer Testing Methods in Determination of Brick Strength

2012 ◽  
Vol 174-177 ◽  
pp. 280-285 ◽  
Author(s):  
Jiří Brožovský

In the building industry, non-destructive testing methods are mostly used to determine parameters of concrete structures and concrete of its own; as to other materials, these methods serve semi-occasionally and, as a rule, testing procedures and evaluation are not codified in technical standards. One of non-destructive testing field of applications is testing of piece bricks. This paper deals with findings concerning non-destructive testing of clay solid bricks, honeycomb bricks and lime sand bricks by means of Schmidt Impact Hammers types LB/L. Described here are testing method, procedures of test finding evaluation as well as calibration correlations between impact hammer rebound number and compression strength or flexural strength (lime sand bricks only). Evaluated calibration correlations between impact hammer rebound number and brick strength feature close correlation; its coefficient varies between 0.95 and 0.98, therefore these values are usable in practice. When testing honeycomb bricks varying in hole arrangement and wall thickness, it is necessary to take both these factors into account through specification of calibration correlation of non-destructive/destructive tests of limited number of bricks.

2008 ◽  
Vol 31 (1) ◽  
pp. 83-87
Author(s):  
I.A. Rubaratuka ◽  
P. Ndumbaro

Of recent a large number of existing reinforced concrete buildings have required reconstruction, renovation and improvement. This tendency poses a number of problems that have to be solved, the main one being to determine the actual strength condition of the structural components/elements of the building. It includes determination of the qualityof materials used, specification of the types and description of apparent faults and damages and extent of wear of the building. To undertake this evaluation, non – destructive testing methods are used. In this paper, applications of non –destructive testing methods to determine the strength state of reinforced concrete columns with corbels and to establishtheir structural strength so as to determine the capacity of a mobile crane to be installed is outlined.


2021 ◽  
Vol 87 (9) ◽  
pp. 44-49
Author(s):  
D. A. Kuzmin

Discontinuities in the products that occur during manufacture, mounting or upon operation can be missed during non-destructive testing which do not provide their complete detectability at a current level of the technology. Therefore, it is necessary to take into account that certain structural elements may have discontinuities of significant dimensions. We present the results of using the methods of probability theory in studying the residual imperfections that remains in the structure after non-destructive control and repair of the previously identified defects. We used the results of operational control of units carried out by ultrasonic and radiographic methods. We present a method for determining a multifactorial coefficient that takes into account the detectability of defects, the number of control procedures and the errors in the instrumentation and methodological support, as well as a generalized equation for the probability distribution of detecting discontinuities. The developed approach provides assessing of the level of damage to the studied objects, their classification proceeding from the quantitative data and determination of the values of postulated discontinuities for deterministic calculations. The results obtained can be used to improve the methods of monitoring NPP facilities.


2014 ◽  
Vol 605 ◽  
pp. 139-142
Author(s):  
Seong Uk Hong ◽  
Yong Taeg Lee ◽  
Seung Hun Kim ◽  
J.H. Na

Recently, the interest in maintenance and repair of existing concrete structures have increased, and it is typical to use non-destructive testing methods such as rebound hardness test or ultrasonic pulse velocity method to execute maintenance and repair of structures efficiently. Many non-destructive testing methods are being used in practice such as at construction sites, but verification for site applications are quite inadequate. Thus, this study intends to evaluate the applicability of Impact Echo Method which is one of the non-destructive testing methods using stress wave. Total of four specimens were planned and produced. The thickness of concrete slab members was estimated using I.E(OLSENs Freedom Data PC with Win.TFS Software Version 2.5.2). The estimated materials of concrete members by IE was found to be IE-1 specimen 178mm, IE-2 specimen 197mm, IE-3 specimen 191mm, and IE-4 specimen 263mm, and the error rate was found to be 4.22%~18.67% (average 9.6%), showing that they are relatively well in agreement. In this study, the experiments were executed with the objective of estimating the thickness of concrete slab members using Impact Echo Method. Through this study, the applicability of thickness estimation in concrete slab members using impact echo method could be confirmed.


Sign in / Sign up

Export Citation Format

Share Document