Theoretical and FEM Research on Inelastic Displacement of Assembled Truss Bridge with Cable Reinforcement

2012 ◽  
Vol 178-181 ◽  
pp. 2038-2042
Author(s):  
Yin Zhi Zhou ◽  
Ke Bin Jiang ◽  
Yong Ding ◽  
Jian Kui Yang

This paper presents theoretical and finite element investigations on inelastic displacement of assembled truss bridge with cable reinforcement (hereinafter referred to as ATCR). A method based on the Principle of virtual work for the determination of the inelastic displacement of ATCR is proposed. Finite element analysis was conducted on the specimen models using the ANSYS program, in order to obtain the inelastic displacement of ATCR and to compare with theoretical results. This study focuses on Bailey bridge under the self-weight load and prestressing force on cable. This paper analyzes various specimens to obtain inelastic displacement in different cases. The approximations of a relation between the inelastic displacement and prestressing force on cable are found. It can be seen that the method in this paper can both calculate the inelastic displacement of traditional truss and prestressed truss (ATCR). Based on both the theoretical and the finite element results, it can be concluded that the relation curve between inelastic displacement and prestressing force is stepwise.

2013 ◽  
Vol 470 ◽  
pp. 232-235
Author(s):  
Li Qin ◽  
Ya Nan Li ◽  
Xiao Guang Wei

Based on the differences aerodynamic characteristics between each sub-conductor of iced bundled conductors, a two-node cable element with three translational and one torsional degrees of freedom at each node is utilized to imitate the bundled conductor and the two-node space beam elements are used to simulated the spacers. Established nonlinear finite element equations of bundled conductors based on the principle of virtual work and solved these equations using Newmark-β method. Numerical example was employed to demonstrate the reliable and efficient of the presented method and program.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


Author(s):  
Quantian Luo ◽  
Liyong Tong

This paper presents optimal design for nonlinear compliant cellular structures with bi- and multi-stable states via topology optimization. Based on the principle of virtual work, formulations for displacements and forces are derived and expressed in terms of stress and strain in all load steps in nonlinear finite element analysis. Optimization for compliant structures with bi-stable states is then formulated as: 1) to maximize the displacement under specified force larger than its critical one; and 2) to minimize the reaction force for the prescribed displacement larger than its critical one. Algorithms are developed using the present formulations and the moving iso-surface threshold method. Optimal design for a unit cell with bi-stable states is studied first, and then designs of multi-stable compliant cellular structures are discussed.


2016 ◽  
Vol 24 ◽  
pp. 4083-4097 ◽  
Author(s):  
Ab Halim ABU BAKAR ◽  
Alyaa ZAINAL ABIDIN ◽  
Hazlee Azil ILLIAS ◽  
Hazlie MOKHLIS ◽  
Syahirah ABD HALIM ◽  
...  

1997 ◽  
Vol 119 (4) ◽  
pp. 831-833 ◽  
Author(s):  
Fan Zijie ◽  
Lu Bingheng ◽  
C. H. Ku

The main objective of this work is to predict the effect of distributed viscoelastic damping on the dynamic response of multilink flexible robot manipulators. A general approach, based on the principle of virtual work, is presented for the modeling of flexible robot arms with distributed viscoelastic damping. The finite element equations are developed, and a recurrence formulation for numerical integration of these equations is obtained. It is demonstrated, by a numerical example, that the viscoelastic damping treatments have a significant effect on the dynamic response of flexible robot manipulators.


Sign in / Sign up

Export Citation Format

Share Document