Study on Domestic Sewage Treatment with Rotating Biological Contactor

2012 ◽  
Vol 178-181 ◽  
pp. 376-379
Author(s):  
Fang Li ◽  
Zeng Lu Qi

This paper adopted a 3-stage rotating biological contactor (RBC), while the operating parameters could be controlled properly, this kind of RBC can obtain better removal effect in domestic sewage treatment. At 25oC, when hydraulic retention time (HRT) is 4h ,6h,8h,10h and 12h ,removal rate of COD is 65.14%,86.10%,89.82%,85.93% and 78.58%.HRT fixes on 8h, removal rate of NH3 –N is 75% after adjusting alkalinity. When rotating rate of RBC is 4,6,8,10,12 and 14 r/min, the removal rate of TN is 53.88%,56.78%,60.03%,58.49%,55.32% and 54.87%.RBC also has a good removal efficiency of TP and obtains the removal rate of TP 45%.There is good prospect in domestic sewage treatment with RBC.

2012 ◽  
Vol 518-523 ◽  
pp. 2530-2534
Author(s):  
Li Jun Nie ◽  
Hua Wen Zhong ◽  
Mei Huang ◽  
Xu Dong Yin

Domestic sewage was treated by adopting flocculation, anaerobic and microaerobic combined process under normal temperature. The result demonstrates: total hydraulic retention time is 5.5h (chemical flocculation 1.0h, UASB reactor 2.0h and MUSB reactor 2.5h). UASB reactor can achieve anaerobic sludge granulation under normal temperature and is fairly feasible for low concentration domestic sewage treatment. Compared with single stage UASB reactor, hydraulic retention time of flocculation-UASB combined technique reduces from 4h to 2h. COD removal rate rises from 45% to 50%-60% and suspended COD is mainly removed. DO of microaerobic MUSB technique after anaerobic treatment is 0.2mg/L-0.5mg/L with air and water ratio of 1:1. Effluent quality is stable, in accordance with first standard of Synthetical Draining Standard of Sewage, GB8978—1996.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1033-1037
Author(s):  
John Leju Celestino Ladu ◽  
Xi Wu Lu

<div> <p>The right combination and sequence of treatment methods is the key to the successful handling of rural domestic sewage. This research aim was to carry out experimental study on the combined process and assess its efficiency, feasibility, robustness and suitability for rural domestic sewage treatment and explore the best treatment effect and operating parameters. The parameter optimized and controlled includes hydraulic retention time (HRT) and temperature during the entire research operations. The average COD, TN, NH4+-N and TP removal efficiency of the combined process was 78.2%, 70%, 76% and 87% respectively. Overall, the combined process proved to be efficient and suitable for rural domestic sewage treatment.</p> </div>


2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


2020 ◽  
Vol 167 ◽  
pp. 01009
Author(s):  
Qin Cai ◽  
Hui-qiang Li ◽  
Ping Yang

A continuous flow chemical reactor was constructed to study the dephosphorization effect on the effluent of the oxygen-limited internal-loop fluidized membrane bioreactor (IF-MBR) for domestic sewage treatment. Removal effect of total phosphorus (TP) by four coagulants of AlCl3, FeCl3, polyaluminum ferric chloride (PAFC) and polyaluminium chloride (PAC) was evaluated. Results showed that when the ratio of coagulants to TP was 5 (coagulants in terms of Fe and Al), the removal efficiency of TP by FeCl3 was 92.5% and the addition of FeCl3 resulted in an increase in the chromaticity of the effluent. PAC and PAFC had good removal of TP, and the removal percentage achieved 96.2 and 97.4, respectively. However, the flocs they produced were small and light, and the performance in settlement was poor. AlCl3 performed well as a phosphorus removal agent, the removal rate of TP reached 97.4%, and the flocs were large and dense. Based on this, AlCl3 was the best choice for IF-MBR and then the experiment further optimized the Al/P ratio. Results showed that when the Al/P ratio was above 1:1, the effluent TP concentration was lower than 1mg/L; when the ratio was higher than 2.5:1, the effluent TP was lower than 0.5mg/L.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 209-216 ◽  
Author(s):  
Y. Inamori ◽  
R. Sudo ◽  
T. Goda

The purpose of this study was to assess the applicability of the anaerobic biofilter process to treat low strength organic wastewater such as domestic sewage. It was found that when the influent BOD was approximately 200 mg/l, water temperature and BOD loading, under a hydraulic retention time (HRT) of 30 hrs, were 20°C and 0.2 kg/m3.day respectively, a BOD removal of at least 70% was attained, and the ratio of sludge produced to BOD removed in the anaerobic biofilter was as low as 0.1. Furthermore it was also found that 75% of nitrogen (N) could be removed in the anaerobic-aerobic biofilter process when the circulation ratio was more than 1:2.


2014 ◽  
Vol 1073-1076 ◽  
pp. 799-803
Author(s):  
Yu Qian Cui ◽  
Wen Xia Xie ◽  
Yue Li

In order to solve practical problems of rural sewage treatment, constructed wetland waste water treatment system is chose to simulate, analyze and evaluate in laboratory. Sand and gravel, granular activated carbons were used as the filter media in the constructed wetland. Experimental results show that the removal rate of filter for the water treatment increases with the rise of the hydraulic retention time and the rise of the temperature. It can be satisfied with the treatment effect at an ambient temperature of 15°C, maintained for 4 days or more hydraulic retention time.


2012 ◽  
Vol 253-255 ◽  
pp. 954-959
Author(s):  
De Hua Xie

The removal of Cu2+ in water via an ion-exchange membrane under no external voltage condition was studied in the research, and effects such as Cu2+ concentration, concentration of compensation potassium ions, water stirring speed, temperature and hydraulic retention time (HRT) on the removal efficiency of Cu2+ were also investigated. The results showed that when the initial concentration of bivalent ion Cu2+ was 0.0787mmol/L (5mg/L), under the experimental conditions of the water temperature at 25 °C , the HRT was 6h, the hydraulic mixing speed was 600±25rpm, and the concentration of the compensation ion K+ was 10 times as that of Cu2+, and the removal efficiency of Cu2+ could be achieved 85%. In addition, using the same equipments, when the inlet concentration of Cu2+ increased to 0.787mmol/L (50mg/L), the removal efficiency would be decreased to 76%; while the ratio of concentration of compensation potassium ions to that of inlet Cu2+ is larger than 20, the removal efficiency would not change significantly as the ratio continued increasing; the removal efficiency would be decreased to 60% when lowering the stirring speed to 300±25rpm; the removal efficiency would be decreased to 68% when lowering the temperature to 15+1 °C; the removal rate was no significant change when the hydraulic retention time (HRT) from 6h to 12h.


1995 ◽  
Vol 32 (7) ◽  
pp. 135-142
Author(s):  
E. Görgün ◽  
N. Artan ◽  
D. Orhon ◽  
R. Tasli

Effective nitrogen removal is now required to protect water quality in sensitive coastal areas. This involves a much more difficult treatment process than for conventional domestic sewage as wastewater quantity and quality exhibits severe fluctuations in touristic zones. Activated sludge is currently the most widely used wastewater treatment and may be upgraded as a predenitrification system for nitrogen removal. Interpretation of nitrification and denitrification kinetics reveal a number of useful correlations between significant parameters such as sludge age, C/N ratio, hydraulic retention time, total influent COD. Nitrogen removal potential of predenitrification may be optimized by careful evaluation of wastewater character and the kinetic correlations.


1995 ◽  
Vol 31 (12) ◽  
pp. 267-273 ◽  
Author(s):  
B. S. O. Ceballos ◽  
A. Konig ◽  
B. Lomans ◽  
A. B. Athayde ◽  
H. W. Pearson

A single full-scale primary facultative pond in Sapé, north-east Brazil was monitored for performance and efficiency. The pond had a hydraulic retention time of 61 days and achieved a 95% BOD5 removal efficiency and had no helminth eggs in the effluent. The effluent failed to meet the WHO faecal coliform guideline for unrestricted irrigation. The pond was dominated by the cyanobacterium Microcystis and gave better than predicted orthophosphate removal. Details of how the system could be simply upgraded utilizing the same land are discussed.


2012 ◽  
Vol 610-613 ◽  
pp. 2000-2005
Author(s):  
Chun Yan Xu ◽  
Hong Jun Han

The uncertainty of operating parameters hinders the practical application of the biological desulfurization. To solve this problem, this study which was conducted in room temperature, pH around seven conditions, investigated the effects of the operating parameters on the hydrogen sulfide (H2S) removal performance in the biotrickling filter, including inlet H2S concentration, inlet flow rate or gas retention time, inlet volume load and circulating liquid spraying flux. The results showed that, the inlet H2S concentration should be controlled within 800mg/m3, 650mg/m3, 400mg/m3, 300mg/m3 respectively while the inlet flow rate was 150L/h, 200L/h, 250L/h, 300L/h, at those conditions, the outlet H2S concentrations were lower than 8mg/m3 and the H2S removal efficiencies were more than 98%. The optimum gas retention time was 12.37s, corresponding to the inlet flow rate of 200L/h, at this time, even if the inlet H2S concentration as high as 700mg/m3, the removal efficiency could be still more than 98%, the outlet concentration of H2S was only 13.1mg/m3. The maximum inlet volume load was 130g/(m3•h), in this condition, the outlet concentration of H2S could be controlled below 12mg/m3, the removal efficiency could above 98.4%.


Sign in / Sign up

Export Citation Format

Share Document