Laboratory Research of Distributed Domestic Sewage by Constructed Wetland Treatment Process

2014 ◽  
Vol 1073-1076 ◽  
pp. 799-803
Author(s):  
Yu Qian Cui ◽  
Wen Xia Xie ◽  
Yue Li

In order to solve practical problems of rural sewage treatment, constructed wetland waste water treatment system is chose to simulate, analyze and evaluate in laboratory. Sand and gravel, granular activated carbons were used as the filter media in the constructed wetland. Experimental results show that the removal rate of filter for the water treatment increases with the rise of the hydraulic retention time and the rise of the temperature. It can be satisfied with the treatment effect at an ambient temperature of 15°C, maintained for 4 days or more hydraulic retention time.

2012 ◽  
Vol 178-181 ◽  
pp. 376-379
Author(s):  
Fang Li ◽  
Zeng Lu Qi

This paper adopted a 3-stage rotating biological contactor (RBC), while the operating parameters could be controlled properly, this kind of RBC can obtain better removal effect in domestic sewage treatment. At 25oC, when hydraulic retention time (HRT) is 4h ,6h,8h,10h and 12h ,removal rate of COD is 65.14%,86.10%,89.82%,85.93% and 78.58%.HRT fixes on 8h, removal rate of NH3 –N is 75% after adjusting alkalinity. When rotating rate of RBC is 4,6,8,10,12 and 14 r/min, the removal rate of TN is 53.88%,56.78%,60.03%,58.49%,55.32% and 54.87%.RBC also has a good removal efficiency of TP and obtains the removal rate of TP 45%.There is good prospect in domestic sewage treatment with RBC.


2012 ◽  
Vol 518-523 ◽  
pp. 2530-2534
Author(s):  
Li Jun Nie ◽  
Hua Wen Zhong ◽  
Mei Huang ◽  
Xu Dong Yin

Domestic sewage was treated by adopting flocculation, anaerobic and microaerobic combined process under normal temperature. The result demonstrates: total hydraulic retention time is 5.5h (chemical flocculation 1.0h, UASB reactor 2.0h and MUSB reactor 2.5h). UASB reactor can achieve anaerobic sludge granulation under normal temperature and is fairly feasible for low concentration domestic sewage treatment. Compared with single stage UASB reactor, hydraulic retention time of flocculation-UASB combined technique reduces from 4h to 2h. COD removal rate rises from 45% to 50%-60% and suspended COD is mainly removed. DO of microaerobic MUSB technique after anaerobic treatment is 0.2mg/L-0.5mg/L with air and water ratio of 1:1. Effluent quality is stable, in accordance with first standard of Synthetical Draining Standard of Sewage, GB8978—1996.


1985 ◽  
Vol 17 (1) ◽  
pp. 61-75 ◽  
Author(s):  
L H A Habets ◽  
J H Knelissen

Within the holding of Bührmann-Tetterode NV, 7 Dutch paper and board mills are operating, all of them using mainly waste paper as raw material. While three of them completely closed their watercircuits, two other mills put into practice biological waste water treatment namely anaerobic and anaerobic/aerobic. Number 6 is realising an anaerobic plant this year and for number 7 research is still being carried out, dealing with several unfavourable aspects. In September 1981 research for anaerobic treatment (UASB reactors) was started. After good results had been achieved on laboratory scale (301), further investigations were started on semitechnical scale (50 m3). In both cases the anaerobic seed sludge granulated after a while and loadings up to 20 kg COD/m3.d could be handled. COD-removal was 70 per cent, even when the hydraulic retention time was only 2.5 hours. In April 1983 a 70 m3 practical scale UASB reactor was started up at the solid board mill of Ceres. In October 1983 a full scale plant was started up at Papierfabriek Roermond. This plant consists of a 1,000 m3 UASB reactor and a 70 m3 gasholder. It has been designed and constructed by Paques BV and is used for pretreatment of effluent, in order to reduce the loading of the activated sludge plant. Besides energy savings on the oxygen input, about 1 million m3/year of biogas is being generated and is used for steamproduction. Both plants are working satisfactorily. Investment costs appeared to be relatively low. At Ceres, pay-out time is 1.5 year, while at Papierfabriek Roermond waste water treatment is cheaper than before, although capacity is doubled.


Author(s):  
Isabela Pires da Silva ◽  
Gabriela Barbosa da Costa ◽  
João Gabriel Thomaz Queluz ◽  
Marcelo Loureiro Garcia

   This study evaluated the effect of hydraulic retention time on chemical oxygen demand (COD) and total nitrogen (TN) removal in an intermittently aerated constructed wetlands. Two horizontal subsurface-flow constructed wetlands were used: one without aeration and the other aerated intermittently (1 hour with aeration/7 hours without aeration). Both systems were evaluated treating domestic wastewater produced synthetically. The flow rate into the two CWs was 8.6 L day-1 having a hydraulic retention time of 3 days. The results show that the intermittently aerated constructed wetland were highly efficient in removing COD (98.25%), TN (83.60%) and total phosphorus (78.10%), while the non-aerated constructed wetland showed lower efficiencies in the removal of COD (93.89%), TN (48.60%) and total phosphorus (58.66). These results indicate, therefore, that intermittent aeration allows the simultaneous occurrence of nitrification and denitrification processes, improving the removal of TN in horizontal subsurface-flow constructed wetlands. In addition, the use of intermittent aeration also improves the performance of constructed wetlands in removing COD and total phosphorus.


2019 ◽  
Vol 9 (23) ◽  
pp. 5132 ◽  
Author(s):  
Jung Eun Park ◽  
Gi Bbum Lee ◽  
Bum Ui Hong ◽  
Sang Youp Hwang

In this study, spent activated carbons (ACs) were collected from a waste water treatment plant (WWTP) in Incheon, South Korea, and regenerated by heat treatment and KOH chemical activation. The specific surface area of spent AC was 680 m2/g, and increased up to 710 m2/g through heat treatment. When the spent AC was activated by the chemical agent potassium hydroxide (KOH), the surface area increased to 1380 m2/g. The chemically activated ACs were also washed with acetic acid (CH3COOH) to compare the effect of ash removal during KOH activation. The low temperature N2 adsorption was utilized to measure the specific surface areas and pore size distributions of regenerated ACs by heat treatment and chemical activation. The functional groups and adsorbed materials on ACs were also analyzed by X-ray photoelectron spectroscopy and X-ray fluorescence. The generated ash was confirmed by proximate analysis and elementary analysis. The regenerated ACs were tested for toluene adsorption, and their capacities were compared with commercial ACs. The toluene adsorption capacity of regenerated ACs was higher than commercial ACs. Therefore, it is a research to create high value-added products using the waste.


2011 ◽  
Vol 356-360 ◽  
pp. 1281-1284
Author(s):  
Yan Hong Chang ◽  
Hui Tao Feng ◽  
Hui Luo ◽  
San Jian Ma

The avermectin wastewater was treated with UASB technique. The paper was focused mainly on the removal rate of COD and the change of ammonia nitrogen of influent and effluent wastewater in the first running stage. At the stable phase of anaerobic operation, the removal rate of COD could be stabilized at 85% when the influent volume load was 9.21 kg/(m3•d), and the effluent COD was about 1400 mg/L. As for ammonia nitrogen concentration of influent and effluent wastewater, in the first 50 days, the former was larger than the latter, after then, it was opposite. In the condition of same volume load but different hydraulic retention time (COD concentration of influent being different), COD removal rate kept almost the same. In the second running stage, the influent COD volume load reached 9.21 kg/(m3•d) at the 16th day, with the COD removal rate being around 87%.


2014 ◽  
Vol 1010-1012 ◽  
pp. 190-194
Author(s):  
Xiao Gang Chen ◽  
Ju Chi Kuang ◽  
Min Hua Chen

In the paper we first discussed the principle of wastewater treatment by iron-carbon micro electrolysis. And the experimental methods were stated clear soon afterwards. Then we designed the micro electrolysis orthogonal experiments. Discussion of influences of related factors on waste water treatment followed. The main factors are cerium ion additive quantity, ratio of La3+/Ce4+ and pH in wastewater. The experimental results show that 1) The sequence of factors influence on wastewater micro-electrolysis treatment is Ce4+ > pH > La3+ > iron/carbon ratio; 2) The lanthanum and cerium ions have a synergistic effect in the wastewater treatment, and cerium ion plays a main role; 3) When pH is 6, COD removal rate arrives at maximum 89%, however when the pH is in the case of too high or too low, the effect of sewage treatment is not good.


2014 ◽  
Vol 852 ◽  
pp. 789-796 ◽  
Author(s):  
Guo Hua Wang ◽  
Lei Wang ◽  
Xue Jun Tan ◽  
Yi Xian Wang ◽  
Feng Wang

The impact of hydraulic retention time (HRT) on two-phase mesophilic (35°C) anaerobic co-digestion of food waste and sewage sludge was studied under mixing ratio of 1:1 on the TS basis. Laboratory-scale, two-phase anaerobic digestion systems were employed with each system consisting of an acidogenic reactor and a methanogenic reactor linked in series. For the acidogenic phase, an increase of volatile fatty acid (VFA) concentration was observed as HRT increased from 1d to 5d and the HRT of 5d was recommended for significantly higher VFA production and less propionate percentage, which could provide stable and favourable substrates for the methane reactor. Under acidogenic HRT of 5d, 20d was proved to be the optimum HRT for methanogenic phase with the methane content, methane production rate, methane yield and two-phase VS removal rate reached 71%, 0.7L/(L·d), 0.69L/gVSremoved and 64.7%, respectively. Results verified that the constraints of conventional anaerobic digestion for food waste or sewage sludge separately could be overcome by synergistic effect of co-digestion strategy and two-phase treatment.


Sign in / Sign up

Export Citation Format

Share Document