The Research of Degradation about 1,2,4-Trichlorobenzene by Microorganism on Different Experiment Condition

2012 ◽  
Vol 178-181 ◽  
pp. 666-670
Author(s):  
Dong Ying Xu ◽  
Xi Wu Lv

Artificial media was used to enrich microbe and improve the water resource quality, therefore trace quantity organic pollutants of 1,2,4-Trichlorobenzene were biodegraded. The result of the experiment showed that, after domestication, the micro association enriched in the assembled medium could remove corresponding trace quantity organic pollutants in some concentration. When the temperature was 30 degree centigrade, the pH was between 6 and 9, the effect was the best about the removal on trace-quantity-organic pollutants water. A strain of bacteria was separated.At the same time, the congener trace quantity organic pollutants could be biodegraded. When the HRT was 6 days, the removal of trace quantity organic pollutants was between 70%~95%. It is evident that the trace quantity organic pollutants of 1,2,4-trichlorobenzene in the source water quality from Meiliang Bay in Taihu Lake can be well degraded by enriched microbes on the artificial media.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Dong-ying Xu

Artificial media were used to enrich microbe and improve the water resource quality; therefore trace quantity organic pollutants of 1,2,4-trichlorobenzene were biodegraded. The result of the test showed that, after domestication, the microassociation enriched in the assembled medium could remove corresponding trace quantity organic pollutants in some concentration. When the temperature was 30 degree centigrade, and the pH was between 6 and 9, the effect about the removal on trace-quantity-organic pollutants water was the best. A strain of bacteria that could degrade 1,2,4-trichlorobenzene was separated, and its degradation mechanism to 1,2,4-trichlorobenzene was studied. At the same time, the congener trace quantity organic pollutants could be biodegraded. Biofilm after domestication can effectively degrade a certain concentration range of three trichlorobenzenes and the removal effect of HRT = 7 d was better than the removal effect of HRT = 5 d. It is evident that the trace quantity organic pollutants of 1,2,4-trichlorobenzene in the source water quality from Meiliang Bay in Taihu Lake can be well degraded by enriched microbes on the artificial media.


2010 ◽  
Vol 39 (4) ◽  
pp. 1388-1401 ◽  
Author(s):  
Nigro Joseph ◽  
Toll David ◽  
Partington Ed ◽  
Wenge Ni-Meister ◽  
Lee Shihyan ◽  
...  

2019 ◽  
Vol 19 (7) ◽  
pp. 2098-2106
Author(s):  
Chelsea W. Neil ◽  
Yingying Zhao ◽  
Amy Zhao ◽  
Jill Neal ◽  
Maria Meyer ◽  
...  

Abstract Source water quality can significantly impact the efficacy of water treatment unit processes and the formation of chlorinated and brominated trihalomethanes (THMs). Current water treatment plant performance models may not accurately capture how source water quality variations, such as organic matter variability, can impact treatment unit processes. To investigate these impacts, a field study was conducted wherein water samples were collected along the treatment train for 72 hours during a storm event. Systematic sampling and detailed analyses of water quality parameters, including non-purgeable organic carbon (NPOC), UV absorbance, and THM concentrations, as well as chlorine spiking experiments, reveal how the THM formation potential changes in response to treatment unit processes. Results show that the NPOC remaining after treatment has an increased reactivity towards forming THMs, and that brominated THMs form more readily than chlorinated counterparts in a competitive reaction. Thus both the reactivity and quantity of THM precursors must be considered to maintain compliance with drinking water standards, a finding that should be incorporated into the development of model-assisted treatment operation and optimization. Advanced granular activated carbon (GAC) treatment beyond conventional coagulation–flocculation–sedimentation processes may also be necessary to remove the surge loading of THM-formation precursors during a storm event.


2014 ◽  
Vol 2014 (14) ◽  
pp. 2625-2640
Author(s):  
Alice E. Towey ◽  
John M. Hake ◽  
Erika R. Gardner ◽  
Joseph A. Augustine

2010 ◽  
Vol 76 (15) ◽  
pp. 5159-5164 ◽  
Author(s):  
Amy M. Kahler ◽  
Theresa L. Cromeans ◽  
Jacquelin M. Roberts ◽  
Vincent R. Hill

ABSTRACT More information is needed on the disinfection efficacy of chlorine for viruses in source water. In this study, chlorine disinfection efficacy was investigated for USEPA Contaminant Candidate List viruses coxsackievirus B5 (CVB5), echovirus 1 (E1), murine norovirus (MNV), and human adenovirus 2 (HAdV2) in one untreated groundwater source and two partially treated surface waters. Disinfection experiments using pH 7 and 8 source water were carried out in duplicate, using 0.2 and 1 mg/liter free chlorine at 5 and 15�C. The efficiency factor Hom (EFH) model was used to calculate disinfectant concentration � contact time (CT) values (mg�min/liter) required to achieve 2-, 3-, and 4-log10 reductions in viral titers. In all water types, chlorine disinfection was most effective for MNV, with 3-log10 CT values at 5�C ranging from ≤0.020 to 0.034. Chlorine disinfection was least effective for CVB5 in all water types, with 3-log10 CT values at 5�C ranging from 2.3 to 7.9. Overall, disinfection proceeded faster at 15�C and pH 7 for all water types. Inactivation of the study viruses was significantly different between water types, but no single source water had consistently different inactivation rates than another. CT values for CVB5 in one type of source water exceeded the recommended CT values set forth by USEPA's Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources. The results of this study demonstrate that water quality plays a substantial role in the inactivation of viruses and should be considered when developing chlorination plans.


Sign in / Sign up

Export Citation Format

Share Document