Iterated Hybrid Localization Algorithm for Random Wireless Sensor Networks Based on Centroid and DV-Hop Algorithm

2012 ◽  
Vol 182-183 ◽  
pp. 1854-1857 ◽  
Author(s):  
Xin Hua Nie ◽  
Zhong Ming Pan

Localization has been a major challenge in Wireless Sensor Networks (WSNs), especially for the applications requiring the accurate position of the sensed information. In this paper, we propose a new localization algorithm based on the Centroid algorithm and the DV-Hop algorithm to improve the positioning accuracy without increasing any extra hardware for sensor nodes. This paper firstly analyzed the advantages and disadvantages of the centroid algorithm and the DV-Hop algorithm. Then we put forward an iterated hybrid algorithm, which is comprised of three steps. Firstly, obtaining the initial location of each unknown node by using the centroid algorithm; secondly, computing the distances among each unknown node to the anchor nodes based on the DV-Hop algorithm; finally, Taylor Series Expansion (TSE) algorithm is utilized to estimate coordinate of each unknown node. Simulation results show that our iterated hybrid algorithm has better positioning accuracy.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Jiang ◽  
Xin Wang ◽  
Li Zhang

According to the application of range-free localization technology for wireless sensor networks (WSNs), an improved localization algorithm based on iterative centroid estimation is proposed in this paper. With this methodology, the centroid coordinate of the space enclosed by connected anchor nodes and the received signal strength indication (RSSI) between the unknown node and the centroid are calculated. Then, the centroid is used as a virtual anchor node. It is proven that there is at least one connected anchor node whose distance from the unknown node must be farther than the virtual anchor node. Hence, in order to reduce the space enclosed by connected anchor nodes and improve the location precision, the anchor node with the weakest RSSI is replaced by this virtual anchor node. By applying this procedure repeatedly, the localization algorithm can achieve a good accuracy. Observing from the simulation results, the proposed algorithm has strong robustness and can achieve an ideal performance of localization precision and coverage.


2013 ◽  
Vol 303-306 ◽  
pp. 201-205
Author(s):  
Shao Ping Zhang

Localization technology is one of the key supporting technologies in wireless sensor networks. In this paper, a collaborative multilateral localization algorithm is proposed to localization issues for wireless sensor networks. The algorithm applies anchor nodes within two hops to localize unknown nodes, and uses Nelder-Mead simplex optimization method to compute coordinates of the unknown nodes. If an unknown node can not be localized through two-hop anchor nodes, it is localized by anchor nodes and localized nodes within two hops through auxiliary iterative localization method. Simulation results show that the localization accuracy of this algorithm is very good, even in larger range errors.


2014 ◽  
Vol 668-669 ◽  
pp. 1194-1197 ◽  
Author(s):  
Yan Feng ◽  
Bo Yi

The three-dimensional positioning algorithm has become a hot research direction in wireless sensor networks localization algorithms, however the existing 3D positioning algorithms have general shortcomings, such as high complexity, low positioning accuracy, great energy consumption. Aiming at the existing problems of 3D localization algorithm, we propose an decentralized 3D positioning algorithm based on RSSI ranging and free ranging mechanism. The algorithm firstly use measured RSSI to establish beacon node neighborhood. Then the method adopts regional division to obtain initial location information for unknown nodes. Finally, the method use the iterative optimization process to achieve a position information updates. Simulation results demonstrate that proposed algorithm is feasible and has better localization accuracy.


2013 ◽  
Vol 475-476 ◽  
pp. 564-568
Author(s):  
Wei Yong Jiang ◽  
Pin Wan ◽  
Yong Hua Wang ◽  
Dong Liang

Localization of sensors is one key technique in wireless sensor networks (WSN).Because the midnormal-based localization algorithm (MBLA) has shortcomings such as low accuracy, relatively large number of iterations, a localization algorithm based on permutation and combination midnormal (PACMLA) for WSN is proposed. Nodes are divided into anchor nodes and unknown nodes. In its own communication range, unknown node can communicate with anchor nodes. In PACMLA algorithm, the unknown node communicates with the anchor nodes in turn, and collects their coordinate information and RSSI value. Then by comparing the RSSI values received by unknown node, these RSSI values are formed an array in accordance with the order from small to large. Then starting from the first value of the RSSI array, each of these values and the value behind them will be combined into data sets. Finally, according to corresponding coordinate information of the RSSI value in the data sets, we will determine the position of the unknown node by Point In Which Side (PIWS) determination. In addition, our algorithm is a kind of Range-free algorithm, and it can cuts down the node energy cost. The experiment results illustrate that the PACMLA algorithm has lower error and higher accuracy.


2013 ◽  
Vol 401-403 ◽  
pp. 1800-1804 ◽  
Author(s):  
Shi Ping Fan ◽  
Yong Jiang Wen ◽  
Lin Zhou

There are some common problems, such as low sampling efficiency and large amount of calculation, in mobile localization algorithm based on Monte Carlo localization (MCL) in wireless sensor networks. To improve these issues, an enhanced MCL algorithm is proposed. The algorithm uses the continuity of the nodes movement to predict the area where the unknown node may reach, constructs high posteriori density distribution area, adds the corresponding weights to the sample points which fall in different areas, and filters the sample points again by using the position relations between the unknown node and its one-hop neighbors which include anchor nodes and ordinary nodes. Simulation results show that the localization accuracy of the algorithm is superior to the traditional localization algorithm. Especially when the anchor node density is lower or the unknown nodes speed is higher, the algorithm has higher location accuracy.


2017 ◽  
Vol 13 (09) ◽  
pp. 69 ◽  
Author(s):  
Lianjun Yi ◽  
Miaochao Chen

<p>Wireless sensor networks (WSN), as a new method of information collection and processing, has a wide range of applications. Since the acquired data must be bound with the location information of sensor nodes, the sensor localization is one of the supporting technologies of wireless sensor networks. However, the common localization algorithms, such as APIT algorithm and DV-Hop algorithm, have the following problems: 1) the localization accuracy of beacon nodes is not high; 2) low coverage rate in sparse environment. In this paper, an enhanced hybrid 3D localization algorithm is designed with combining the advantages of APIT algorithm and DV-Hop algorithm. The proposed hybrid algorithm can improve the localization accuracy of the beacon nodes in dense environments by reducing the triangles in the triangle interior point test (PIT) and selecting good triangles. In addition, the algorithm can combine the advantages of APIT algorithm and DV-Hop algorithm localization algorithm to calculate the unknown node coordinates, and also improve the location coverage of the beacon nodes in sparse environment. Simulation results show that the proposed hybrid algorithm can effectively improve the localization accuracy of beacon nodes in the dense environment and the location coverage of beacon nodes in sparse environment.</p>


2014 ◽  
Vol 998-999 ◽  
pp. 1305-1310
Author(s):  
Fei Liu ◽  
Guang Zeng Feng

The localization accuracy of traditional APIT localization algorithm for wireless sensor network depends on the Approximate Perfect Point-In-Triangulation Test (APIT), and the localization error can be promoted in sparse network. We design one improved localization algorithm (RTD-APIT) based on APIT by using the RSSI and the triangles deformation. RTD-APIT uses the RSSI to improve the APIT for achieving the preliminary location of unknown node, and expand or deform the triangles for solving the Point-In-Triangulation (PIT) problem well and enhancing the localization. Simulation shows RTD-APIT can reduce the localization error effectively, and it also promote the localization coverage.


2016 ◽  
Vol 12 (11) ◽  
pp. 80 ◽  
Author(s):  
Songbo Ji

<p class="Abstract"><span lang="EN-US">Aimed at solving the problem of local divergence and low data accuracy, this paper introduces a new Time Difference of Arrival(TDOA)-based localization algorithm (TBL) for the large-scale, high-density wireless sensor networks which are designed for real-time surveillance and unexpected incidents management. In particular, several means to improve the accuracy of distance measurement are investigated, and the TDOA method, based on the sound wave and electromagnetic wave to locate in the large-scale WSN, is discussed. Also, the well-designed circular location process has the advantage of better positioning accuracy and coverage percentage. Simulation results have confirmed the effectiveness of the formed TBL algorithm.</span></p>


2014 ◽  
Vol 998-999 ◽  
pp. 1390-1393
Author(s):  
Yong He

This paper proposes a node localization algorithm based on super chondritic calculation, super chondritic calculation scanning of a training set is able to complete the training process, the training has characteristics of fast, the problem of node localization for wireless sensor networks. Firstly, according to the related parameter information for the location of wireless sensor nodes, a multi input, multi output problem of training set, and then through the methods of grid division, location area, the original training set into the classification of multi input, single output training set, the super chondritic algorithm by scanning training, in order to get the relevant parameters, and the estimation of the unknown node location. Simulation results show that the proposed algorithm has better positioning accuracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Huanqing Cui ◽  
Yongquan Liang ◽  
Chuanai Zhou ◽  
Ning Cao

Due to uneven deployment of anchor nodes in large-scale wireless sensor networks, localization performance is seriously affected by two problems. The first is that some unknown nodes lack enough noncollinear neighbouring anchors to localize themselves accurately. The second is that some unknown nodes have many neighbouring anchors to bring great computing burden during localization. This paper proposes a localization algorithm which combined niching particle swarm optimization and reliable reference node selection in order to solve these problems. For the first problem, the proposed algorithm selects the most reliable neighbouring localized nodes as the reference in localization and using niching idea to cope with localization ambiguity problem resulting from collinear anchors. For the second problem, the algorithm utilizes three criteria to choose a minimum set of reliable neighbouring anchors to localize an unknown node. Three criteria are given to choose reliable neighbouring anchors or localized nodes when localizing an unknown node, including distance, angle, and localization precision. The proposed algorithm has been compared with some existing range-based and distributed algorithms, and the results show that the proposed algorithm achieves higher localization accuracy with less time complexity than the current PSO-based localization algorithms and performs well for wireless sensor networks with coverage holes.


Sign in / Sign up

Export Citation Format

Share Document