centroid algorithm
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (49) ◽  
pp. 37-44
Author(s):  
I. B. Ivasiv ◽  

It has been proposed to utilize the median algorithm for determination of the extrema positions of diffuse light reflectance intensity distribution by a discrete signal of a photodiode linear array. The algorithm formula has been deduced on the base of piecewise-linear interpolation for signal representation by cumulative function. It has been shown that this formula is much simpler for implementation than known centroid algorithm and the noise immune Blais and Rioux detector algorithm. Also, the methodical systematic errors for zero noise as well as the random errors for full common mode additive noises and uncorrelated noises have been estimated and compared for mentioned algorithms. In these terms, the proposed median algorithm is proportionate to Blais and Rioux algorithm and considerably better then centroid algorithm.


2021 ◽  
Vol 13 (3) ◽  
pp. 432
Author(s):  
Shiyu Yan ◽  
Guohui Yang ◽  
Qingyan Li ◽  
Bin Zhang ◽  
Yu Wang ◽  
...  

We report on a self-adaptive waveform centroid algorithm that combines the selection of double-scale data and the intensity-weighted (DSIW) method for accurate LiDAR distance–intensity imaging. A time window is set to adaptively select the effective data. At the same time, the intensity-weighted method can reduce the influence of sharp noise on the calculation. The horizontal and vertical coordinates of the centroid point obtained by the proposed algorithm are utilized to record the distance and echo intensity information, respectively. The proposed algorithm was experimentally tested, achieving an average ranging error of less than 0.3 ns under the various noise conditions in the listed tests, thus exerting better precision compared to the digital constant fraction discriminator (DCFD) algorithm, peak (PK) algorithm, Gauss fitting (GF) algorithm, and traditional waveform centroid (TC) algorithm. Furthermore, the proposed algorithm is fairly robust, with remarkably successful ranging rates of above 97% in all tests in this paper. Furthermore, the laser echo intensity measured by the proposed algorithm was proved to be robust to noise and to work in accordance with the transmission characteristics of LiDAR. Finally, we provide a distance–intensity point cloud image calibrated by our algorithm. The empirical findings in this study provide a new understanding of using LiDAR to draw multi-dimensional point cloud images.


2020 ◽  
Author(s):  
Lia Di ◽  
Saymon Akther ◽  
Edgaras Bezrucenkovas ◽  
Larisa Ivanova ◽  
Brian Sulkow ◽  
...  

AbstractNatural populations of microbes and their hosts are engaged in an arms race in which microbes diversify to escape host immunity while hosts evolve novel immunity. This co-evolutionary process, known as the “Red Queen” hypothesis, poses a fundamental challenge to the development of broadly effective vaccines and diagnostics against a diversifying pathogen. Based on surveys of natural allele frequencies and experimental immunization of mice, we show minimal antigenic cross-reactivity among natural variants of the outer surface protein C (OspC), a dominant antigen of a Lyme Disease-causing bacterium (Borrelia burgdorferi). To overcome the challenge of OspC antigenic diversity to clinical development of preventive measures, we implemented a number of evolution-based strategies to broaden OspC immunological cross-reactivity. In particular, the centroid algorithm – a genetic algorithm to minimize sequence differences with natural variants – generated synthetic OspC analogs with the greatest promise as diagnostic and vaccine candidates against diverse Lyme pathogen strains coexisting in the Northeast United States. Mechanistically, we propose a model of runaway maximum antigen di-versification (MAD) mediated by amino-acid variations distributed across hypervariable regions on the OspC molecule. Under the MAD model, evolutionary centroids display high cross-reactivity by occupying the central void in the antigenic space excavated by diversifying natural variants. In contrast to the vaccine design based on concatenated epitopes, the centroid algorithm generates analogs of native antigens and is automated. The MAD model and evolution-inspired antigen designs have broad implications for combating diversifying pathogens driven by pathogen-host coevolution.ImportanceMicrobial pathogens rely on molecular diversity of cell surface antigens to escape host immunity. Vaccines based on one antigen variant often fail to protect the host against pathogens carrying other variants. Here we show evolution-based designs of synthetic antigens that are broadly reactive to all natural variants. The evolutionary analogs of a major surface antigen of a Lyme disease bacterium (Borrelia burgdorferi) showed promise as vaccine candidates against diverse pathogen strains coexisting in the endemic areas of Lyme disease in Northeast United States. Our evolution-based computational design is automated, generates molecular analogs of natural antigens, and opens a novel path to combating fast-evolving microbial pathogens.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402091367
Author(s):  
Zhai Hua ◽  
Mao Hong-min ◽  
Wang Dong ◽  
Lu Xue-song ◽  
Ding Xu

An improved instantaneous frequency estimation algorithm for rotating machines based on a kernel-based fuzzy C-means clustering (KFCM) algorithm used in association with a spectral centroid algorithm is proposed in this study. The clustering algorithm is used first to discriminate the time-frequency points from the sources of the reference axis and other points. The discrete time-frequency points related to the instantaneous rotation frequency of the reference axis are then located based on the values of the time-frequency matrix elements; on the basis of these elements, the instantaneous rotation frequency is then estimated using a spectral centroid algorithm. It is demonstrated that this method effectively reduces the effects of interference and noise while achieving higher estimation precision. To validate the proposed method, numerical simulations of multi-component signals and crossover signals are performed. The results of these simulations indicate that the method can realize instantaneous frequency estimation with high precision, even when the numerical responses are contaminated by Gaussian white noise. In addition, when this method is used to analyze the vibration signal of rotating machinery in the situation of a run-up procedure, remarkable speed estimation results are obtained.


2020 ◽  
Vol 16 (4) ◽  
pp. 155014772091702
Author(s):  
Haiying Wang ◽  
Linhao Liang ◽  
Jian Xu ◽  
Hui She ◽  
Wuxiang Li

To improve the accuracy and generalization of tunnel personnel positioning systems, this article proposes a quadratic weighted centroid algorithm. By adopting a Gaussian filter model to improve the range accuracy of the received signal strength indicator algorithm and combining the centroid algorithm and weighting factor with a trilateration positioning model, a quadratic weighted centroid algorithm is proposed to improve the positioning accuracy of unknown positioning nodes. The key ideas behind the quadratic weighted centroid algorithm include an optimization of the received signal strength indicator range value scheme, a centroid algorithm based on trilateral measurement positioning, and a weighting factor to improve the positioning accuracy of the trilateral centroid positioning algorithm. Compared with the centroid algorithm, the Min-Max multilateration algorithm, and the weighted centroid based on distance algorithm, the simulation results showed that (1) the positioning performance of the quadratic weighted centroid algorithm was superior to the other three algorithms; (2) when the reference nodes were symmetrically arranged, the positioning accuracy was higher than a fold line layout; and (3) when the lateral reference node spacing was extended from 20 to 30 m, the average positioning error met positioning accuracy requirements, which could reduce overall system costs.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 376 ◽  
Author(s):  
Chengwu Zhao ◽  
Junqiang Song ◽  
Hongze Leng ◽  
Juan Zhao

Precise center-detection of tropical cyclones (TCs) is critical for dynamic analysis in high resolution model data. The existence of both smaller scale perturbations and larger scale circulations could reduce the accuracy of center positioning. In this study, an objective center-finding algorithm is developed based on a two-dimensional Fourier filter and a vorticity centroid algorithm. This proposed algorithm is able to automatically adjust its parameters according to the scale of the target vortex instead of using artificially prescribed parameters in previous research. What’s more, this new algorithm has been optimized and validated by a hundred idealized vortexes with different sizes and small-scale perturbations. A high-resolution simulation of Typhoon Soudelor (2015) was used to evaluate the performance of the new algorithm, and the proposed objective center-finding algorithm was found able to detect a precise and reliable center.


Author(s):  
Sushil Ghildiyal ◽  
KishanKumar Bhimani ◽  
Geetha Mani ◽  
Monica Subashini ◽  
Anastasiia Stotckaia

Sign in / Sign up

Export Citation Format

Share Document