The Fuzzy Self-Tuning PID Control for Boiler Drum Water Level

2012 ◽  
Vol 198-199 ◽  
pp. 1231-1234 ◽  
Author(s):  
Yong Sheng Zhang ◽  
Shu Qin Zhao

In order to improve the control quality of water level for boiler drum, a fuzzy self-tuning PID level controller for boiler drum was designed based on the fuzzy logic principle. The fuzzy logic toolbox and Simulink module of Matlab software were used for the modeling of the water level control system of boiler drum. Numerical simulation was implemented. The result shows that the fuzzy self-tuning PID control has such virtues as smaller overshoot, shorter regulating time and stronger robustness than conventional three-element PID control. The fuzzy self-tuning PID control is especially effective for nonlinear system like boiler with multivariable, large time lagged and strong coupling. It is a very effective control method with widely application prospect.

2011 ◽  
Vol 383-390 ◽  
pp. 4184-4188
Author(s):  
Yong Sheng Zhang ◽  
Yun Yi Ma

In order to improve the control quality of the water level for steam generator, a fuzzy level controller for steam generator is designed based on the fuzzy logic principle. The fuzzy logic toolbox and Simulink module of Matlab software are used for the modeling of the water level control system of steam generator. The operating condition of reducing load is calculated. Simulation result shows that the fuzzy control has such virtues as smaller overshoot, shorter regulating time and stronger robustness than the conventional three-element PID control. Fuzzy control is especially effective for nonlinear system like steam generator with multivariable, large time lagged and strong coupling. It is a very effective control method with widely application prospect.


2020 ◽  
Vol 309 ◽  
pp. 05003
Author(s):  
Fansheng Meng ◽  
Xuefei Zhang ◽  
Yan Zheng ◽  
Xi Cheng ◽  
Zhi Weng

Boiler drum water level control system is hard to develop practical mathematical model and has nonlinear, stable and delay characteristics. The traditional boiler drum water level control often uses three impulse PID control method. The existing problem of ordinary PID control strategy is: once good parameter setting, it is hard to adapt to the change of the operation of the system dynamic greatly. In order to solve the problems of the above, the research object of the subject is a certain 120 t/h boiler steam capacity, the boiler drum water level control system is designed, and the control strategies are studied. In order to obtain better contrast, the ordinary PID controller and Fuzzy controller are designed, and the control strategies of the simulation are analyzed.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4160
Author(s):  
Waqar Uddin ◽  
Tiago D. C. Busarello ◽  
Kamran Zeb ◽  
Muhammad Adil Khan ◽  
Anil Kumar Yedluri ◽  
...  

This paper proposed a control method for output and circulating currents of modular multilevel converter (MMC). The output and circulating current are controlled with the help of arm currents, which contain DC, fundamental frequency, and double frequency components. The arm current is transformed into a stationary reference frame (SRF) to isolate the DC and AC components. The AC component is controlled with a conventional proportional resonant (PR) controller, while the DC component is controlled by a proportional controller. The effective control of the upper arm and lower arm ultimately controls the output current so that it delivers the required power to the grid and circulating current in such a way that the second harmonic component is completely vanished leaving behind only the DC component. Comparative results of leg-level control based on PR controller are included in the paper to show the effectiveness of the proposed control scheme. A three-phase, five-level MMC is developed in MATLAB/Simulink to verify the effectiveness of the proposed control method.


1995 ◽  
Vol 74 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Nanju Na ◽  
Keechoon Kwon ◽  
Changshik Ham ◽  
Zeungnam Bien

2013 ◽  
Vol 341-342 ◽  
pp. 892-895
Author(s):  
Jun Chao Zhang ◽  
Shao Hong Jing

The introduction of the AQC boiler has complex effects on the temperature of Tertiary air, traditional PID is difficult to achieve the effective control. Combined the method of the conventional PID with the fuzzy control theory, a fuzzy self-tuning PID controller is designed. Compared with traditional PID, results of simulation show that the fuzzy PID controller improves not only the adaptability and robustness of the system, but also the system's static and dynamic performance.


2014 ◽  
Vol 602-605 ◽  
pp. 1186-1189
Author(s):  
Dong Sheng Wu ◽  
Qing Yang

Aiming at the phenomena of big time delay are normally existing in industry control, this paper proposes an intelligent GA-Smith-PID control method based on genetic algorithm and Smith predictive compensation algorithm and traditional PID controller. This method uses the ability of on line-study, a self-turning control strategy of GA, and better control of Smith predictive compensation to deal with the big time delay. This method overcomes the limitation of traditional PID control effectively, and improves the system’s robustness and self-adaptability, and gets satisfactory control to deal with the big time delay system.


Sign in / Sign up

Export Citation Format

Share Document