Stability Properties of Pulse Vaccination Strategy in the SIVS Epidemic Models with Nonlinear Incidence Rate

2012 ◽  
Vol 198-199 ◽  
pp. 819-823
Author(s):  
Yan Song

In this paper, we discuss the SIVS epidemic models with vertical transmission and nonlinear incidence rate. We study the stability properties of pulse vaccination strategy in the models and obtain the sufficient condition for which the epidemic elimination solution is globally asymptotically stable.

2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Lei Wang ◽  
Zhidong Teng ◽  
Long Zhang

We study a class of discrete SIRS epidemic models with nonlinear incidence rateF(S)G(I)and disease-induced mortality. By using analytic techniques and constructing discrete Lyapunov functions, the global stability of disease-free equilibrium and endemic equilibrium is obtained. That is, if basic reproduction numberℛ0<1, then the disease-free equilibrium is globally asymptotically stable, and ifℛ0>1, then the model has a unique endemic equilibrium and when some additional conditions hold the endemic equilibrium also is globally asymptotically stable. By using the theory of persistence in dynamical systems, we further obtain that only whenℛ0>1, the disease in the model is permanent. Some special cases ofF(S)G(I)are discussed. Particularly, whenF(S)G(I)=βSI/(1+λI), it is obtained that the endemic equilibrium is globally asymptotically stable if and only ifℛ0>1. Furthermore, the numerical simulations show that for general incidence rateF(S)G(I)the endemic equilibrium may be globally asymptotically stable only asℛ0>1.


Author(s):  
Jianpeng Wang ◽  
Binxiang Dai

In this paper, a reaction–diffusion SEI epidemic model with nonlinear incidence rate is proposed. The well-posedness of solutions is studied, including the existence of positive and unique classical solution and the existence and the ultimate boundedness of global solutions. The basic reproduction numbers are given in both heterogeneous and homogeneous environments. For spatially heterogeneous environment, by the comparison principle of the diffusion system, the infection-free steady state is proved to be globally asymptotically stable if [Formula: see text] if [Formula: see text], the system will be persistent and admit at least one positive steady state. For spatially homogenous environment, by constructing a Lyapunov function, the infection-free steady state is proved to be globally asymptotically stable if [Formula: see text] and then the unique positive steady state is achieved and is proved to be globally asymptotically stable if [Formula: see text]. Finally, two examples are given via numerical simulations, and then some control strategies are also presented by the sensitive analysis.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1829
Author(s):  
Ardak Kashkynbayev ◽  
Fathalla A. Rihan

In this paper, we study the dynamics of a fractional-order epidemic model with general nonlinear incidence rate functionals and time-delay. We investigate the local and global stability of the steady-states. We deduce the basic reproductive threshold parameter, so that if R0<1, the disease-free steady-state is locally and globally asymptotically stable. However, for R0>1, there exists a positive (endemic) steady-state which is locally and globally asymptotically stable. A Holling type III response function is considered in the numerical simulations to illustrate the effectiveness of the theoretical results.


2018 ◽  
Vol 11 (06) ◽  
pp. 1850085 ◽  
Author(s):  
Divine Wanduku

A family of deterministic SEIRS epidemic dynamic models for malaria is presented. The family type is determined by a general functional response for the nonlinear incidence rate of the disease. Furthermore, the malaria models exhibit three random delays — the incubation periods of the plasmodium inside the female mosquito and human hosts, and also the period of effective acquired natural immunity against the disease. Insights about the effects of the delays and the nonlinear incidence rate of the disease on (1) eradication and (2) persistence of malaria in the human population are obtained via analyzing and interpreting the global asymptotic stability results of the disease-free and endemic equilibrium of the system. The basic reproduction numbers and other threshold values for malaria are calculated, and superior threshold conditions for the stability of the equilibria are found. Numerical simulation results are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Jihad Adnani ◽  
Khalid Hattaf ◽  
Noura Yousfi

We investigate a stochastic SIR epidemic model with specific nonlinear incidence rate. The stochastic model is derived from the deterministic epidemic model by introducing random perturbations around the endemic equilibrium state. The effect of random perturbations on the stability behavior of endemic equilibrium is discussed. Finally, numerical simulations are presented to illustrate our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document