Numerical Simulation of Tectonic Stress Field in Longmenshan Tectonic Belts after Earthquake

2012 ◽  
Vol 204-208 ◽  
pp. 2440-2443 ◽  
Author(s):  
Sheng Rui Su ◽  
Hu Jun He ◽  
Ying Zhang ◽  
Peng Li

Two-dimensional finite element model of Longmenshan area was built on the basis of depth study on geological structure conditions and of rock mechanical properties in Longmenshan area, tectonic stress field and variation process of Longmenshan fault belt were inversed after the earthquake. The results show that: (1)After the earthquake, the maximum principal stress appears in fault endpoint, partial inflection point, intersection of Longmenshan fault and Xianshuihe fault and intersection of Minjiang fault, Animaqing-lueyang fault and Longmenshan Fault. The maximum principal stress in area is overall NEE to SEE.(2)After earthquake, shear stress distribution is more uniform, and compared after earthquake to before earthquake, shearing stress of Longmenshan central fault and Qianshan fault reduces obviously, but shear stress of Houshan fault increases.

2013 ◽  
Vol 864-867 ◽  
pp. 2418-2421
Author(s):  
Li Yang ◽  
Jian Lin Li ◽  
Shi Wei Luo

The tectonic stress field plays an important role in the research of crustal stability, fault activity and the geological disaster effect. On the basis of related geological data, ANSYS and FLAC3D are applied in this paper to set up a reasonable geological structure model and boundary conditions, aiming at making a numerical simulation analysis of tectonic stress field in the southeast of the Qinghai-Tibet plateau. The result and the measured data fit better, which provides a reference for the further study of the project.


2020 ◽  
Author(s):  
Carolina Giorgetti ◽  
Marie Violay

<p>Despite natural faults are variably oriented to the Earth's surface and to the local stress field, the mechanics of fault reactivation and slip under variable loading paths (sensu Sibson, 1993) is still poorly understood. Nonetheless, different loading paths commonly occur in natural faults, from load-strengthening when the increase in shear stress is coupled with an increase in normal stress (e.g., reverse faults in absence of the fluid pressure increase) to load-weakening when the increase in shear stress is coupled with a decrease in normal stress (e.g., normal faults). According to the Mohr-Coulomb theory, the reactivation of pre-existing faults is only influenced by the fault orientation to the stress field, the fault friction, and the principal stresses magnitude. Therefore, the stress path the fault experienced is often neglected when evaluating the potential for reactivation. Yet, in natural faults characterized by thick, incohesive fault zone and highly fractured damage zone, the loading path could not be ruled out. Here we propose a laboratory approach aimed at reproducing the typical tectonic loading paths for reverse and normal faults. We performed triaxial saw-cut experiments, simulating the reactivation of well-oriented (i.e., 30° to the maximum principal stress) and misoriented (i.e., 50° to the maximum principal stress), normal and reverse gouge-bearing faults under dry and water-saturated conditions. We find that load-strengthening versus load-weakening path results in clearly different hydro-mechanical behavior. Particularly, prior to reactivation, reverse faults undergo <em>compaction</em> even at differential stresses well below the value required for reactivation. Contrarily, normal faults experience <em>dilation</em>, most of which occurs only near the differential stress values required for reactivation. Moreover, when reactivating at comparable normal stress, normal faults (load-weakening path) are more prone to slip seismically than reverse fault (load-strengthening path). Indeed, the higher mean stress that normal fault experienced before reactivation compacts more efficiently the gouge layer, thus increasing the fault stiffness and favoring seismic slip. This contrasting fault zone compaction and dilation prior to reactivation may occur in different natural tectonic settings, affecting the fault hydro-mechanical behavior. Thus, to take into account the loading path the fault experienced is fundamental in evaluating both natural and induced fault reactivation and the related seismic risk assessment.</p>


2012 ◽  
Vol 226-228 ◽  
pp. 1458-1461
Author(s):  
Sheng Rui Su ◽  
Ying Zhang ◽  
Hu Jun He ◽  
Xiao Jian Wang

Two-dimensional finite element model of Qianning basin was built on the basis of depth study on geological structure conditions and of rock mechanical properties in Qianning basin, tectonic stress field characteristics of Qianning fault belt and Qianning basin formation mechanism were inversed. The results show that: (1)A remarkable low stress region is come into being in the central part of Qianning basin, the low stress environment in the strike-slip fault zone has a very important control function for the basin formation. (2)in the rock bridge area of secondary fault belt sinistral right order, high stress concentration zone are formed, rock body subject to extrusion, which often forms pushing structure, the surface morphology appears landforms phenomenon such as surface uplift, drum kits etc.


1999 ◽  
Vol 12 (5) ◽  
pp. 550-561 ◽  
Author(s):  
Fu-Ren Xie ◽  
Shi-Min Zhang ◽  
Su-Qin Dou ◽  
Xiao-Feng Cui ◽  
Sai-Bing Shu

Author(s):  
Subhasis Mukherjee ◽  
Abhijit Dasgupta

There are various specimen configurations available in the literature for characterizing the mechanical behavior of solder interconnect materials. An ideal test specimen should use a simple geometry to minimize the complexity of the stress analysis and which produces a uniform material response throughout the test material. In the thermo-mechanical micro scale (TMM) test used in this study, we use a simple, notched shear specimen, based on a concept originally proposed by Iosipescu [1967] [1], which produces a very uniform shear stress field in the solder joint volume [Reinikainen et al., 1998] [2]. Our modified Iosipescu specimen comprises of two oxygen free, high conductivity (OFHC) copper platens soldered together and loaded in simple shear. The solder joint in this specimen is only 180 microns wide to capture the length scale effects of functional solder interconnects. This study examines the effects of dimensional variabilities of this modified Iosipescu specimen on the shear stress distribution in the solder joint. Variabilities encountered in these specimens include: (i) fillets at the V-notches, caused by excess solder; (ii) offset between the two copper platens along the loading direction; (iii) taper of the solder joint due to lack of parallelism of the edges of the copper platens; and (iv) misalignment between the specimen centerline and loading axis of the TMM test frame due to mounting variability. Detailed parametric studies of these four dimensional variations in the TMM specimen are conducted using a simple two-dimensional elastic-plastic finite element model. The uniformity of the shear stress field in the specimen is investigated and the variation in the derived stress-strain curves is examined, as a function of the dimensional variabilities described above.


Sign in / Sign up

Export Citation Format

Share Document