Fatigue Stress Analysis of Diaphragm Cap Hole in Orthotropic Steel Bridge Decks

2012 ◽  
Vol 204-208 ◽  
pp. 3265-3269
Author(s):  
Mu Ye Yang ◽  
Rong Liu ◽  
Bo Hai Ji ◽  
Han Jiang Xu ◽  
Ce Chen ◽  
...  

Influence of diaphragm parameter on stress amplitude and fatigue damage of diaphragm details were investigated based on Tai Zhou Yangtze River Bridge. FEM of steel bridge deck and diaphragm detail were established. Boundary conditions of the diaphragm details FEM were interpolated by sub-model method, and the accurate local stresses of diaphragm details correspond to different lateral distribution of wheels were calculated. Results show the stress amplitude of diaphragm details reach maximum when wheel off-center position is 150mm, and it decreases with the increase of wheel off-center position greatly. The stress amplitude of diaphragm details increase with the increase of the distance of diaphragms, and increasing diaphragm’s thickness can improve fatigue stress of steel bridge deck.

2010 ◽  
Vol 163-167 ◽  
pp. 122-126 ◽  
Author(s):  
Ru Deng Luo ◽  
Mei Xin Ye ◽  
Ye Zhi Zhang

Orthotropic monolithic steel bridge deck system stiffened by U rib is very fit for high-speed railway steel bridges because of its excellent mechanical behaviors. Thickness of flange is a very important parameter of U rib and has influence on mechanical behaviors of orthotropic monolithic steel bridge deck system. Based on the engineering practice of Anqing Yangtze River Railway Grand Bridge, the kind and the extents of influences of thickness of flange of U rib on mechanical behaviors of orthotropic monolithic steel bridge deck system are studied with finite element analysis. The results show that thickness of flange of U rib has relative large positive influences on rigidity, strength and stability of orthotropic monolithic steel bridge deck system. 14~18mm is the appropriate range of thickness of flange of U rib for high-speed railway steel bridges.


2015 ◽  
Vol 1096 ◽  
pp. 562-566 ◽  
Author(s):  
Bo Yu ◽  
Tao Hong ◽  
Jian Zhang ◽  
Qing Yu Liang

Due to the superior structure style, orthotropic steel bridge deck has been getting more and more widely practical application. The static and fatigue tests of the orthotropic steel bridge deck models were carried out in this research paper, which presented the fatigue damage developing laws, compared the test results with homogeneous test results in existing documents, and according to the relative fatigue accumulative damage theory, the fatigue accumulative damage equations of the sectional specimen and the whole specimen are respectively studied.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Gaoxin Wang ◽  
Youliang Ding ◽  
Zhijun Liu ◽  
Jingshu Shao

The fatigue analysis on orthotropic steel bridge decks is a hot topic in bridge engineering field. This study provides one method for fatigue analysis under the combined actions of vehicle loads and pavement temperature. To be specific, taking the steel bridge deck of one cable-stayed bridge as a research object, this study proposes a method of calculating life-cycle fatigue damage of orthotropic steel deck under the combined actions of vehicle loads and pavement temperature. First, a finite element model of steel bridge deck with asphalt pavement is built to analyze the influence of pavement temperature on the fatigue stress of steel bridge deck. Second, a simulation method of fatigue stress caused by random vehicle loads is proposed. Finally, a method of calculating the life-cycle fatigue damage of welded joints under the combined actions of vehicle loads and temperature is proposed. The results show that temperature has a significant effect on fatigue damage, and the cumulative fatigue damage in the rib-to-rib welded joint is significantly greater than that in the deck-to-rib welded joint. The results can provide meaningful references for bridge engineers to carry out fatigue analysis on orthotropic steel bridge decks.


Author(s):  
Ryo Nakata ◽  
Yukio Adachi

<p>Fatigue damage is a major topic in bridge maintenance. The fatigue damage to steel bridge deck has been dramatically increasing since the first fatigue damage was observed in Hanshin expressway in early 2000s. Insufficient knowledge of bridge fatigue design and unexpected increase of traffic demand and heavy vehicle could be the cause of the fatigue damage.</p><p>Replacement of base pavement course to steel fiber reinforced concrete (SFRC) has been generally used for strengthening of steel decks; however, the countermeasure from the topside of the bridge deck could make serious traffic disruption. Therefore, reactive and proactive maintenance for such steel decks has not been well progressed so far.</p><p>According to the background above, Hanshin expressway has been making an effort on developing new method by strengthening steel deck from the bottom side. The idea of the new method is to enhance fatigue resistance by improving the weld joint between deck plate and U-rib plate. Three potential methods were identified and the effectiveness of those methods was studied in field for making sure of not only fatigue resistance improvement but also field construction.</p><p>This paper will introduce the new retrofit methods for steel deck and describe the effectiveness of those methods.</p>


2005 ◽  
pp. 57-69 ◽  
Author(s):  
Chitoshi MIKI ◽  
Hisatada SUGANUMA ◽  
Masayuki TOMIZAWA ◽  
Fumitaka MACHIDA

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 484 ◽  
Author(s):  
Yixin Chen ◽  
Pengmin Lv ◽  
Datao Li

The orthotropic steel bridge deck weld structure would easily cause fatigue cracking under the repeated action of vehicle load. This paper took the steel box girder in a bridge as a research object, researched the mechanical properties of the steel plate and the microstructure of the welded joint, then designed the fatigue specimens of the deck plate and did the fatigue test. The Δσ-N curves and stress amplitudes of the weld details of the deck plate with U-rib and diaphragm under different probabilities of survival were obtained. After extended the Δσ-N curves to the long life range, the fatigue damage calculation equation of the detail was proposed, and the cut-off limit under the 50% and 97.7% probability of survival were 81.50 MPa and 53.11 MPa, respectively. Based on the actual vehicle load spectrum and simplified finite element model of the steel box girder section, the stress amplitude of the details of the weld joint was calculated. The calculation result shows that the maximum stress amplitude of the concerned point was 38.29 MPa, less than the cut-off limit. It means that the fatigue strength of the details of the weld joint meet the requirement of the fatigue design.


2006 ◽  
Vol 62 (4) ◽  
pp. 950-963 ◽  
Author(s):  
Chitoshi MIKI ◽  
Keigo SUZUKI ◽  
Takashi KANO ◽  
Eiichi SASAKI ◽  
Minoru ISHIDA ◽  
...  

2021 ◽  
Vol 291 ◽  
pp. 123366
Author(s):  
Yang Liu ◽  
Zhendong Qian ◽  
Xijun Shi ◽  
Yuheng Zhang ◽  
Haisheng Ren

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 565
Author(s):  
Changbo Liu ◽  
Zhendong Qian ◽  
Yang Liao ◽  
Haisheng Ren

This study aims to evaluate the economy of a steel bridge deck pavement scheme (SBDPS) using a comprehensive life-cycle cost (LCC) analysis approach. The SBDPS are divided into the “epoxy asphalt concrete system”(EA system) and“ Gussasphalt concrete system”(GA system) according to the difference in the material in the lower layer of the SBDPS. A targeted LCC checklist, including manager cost and user cost was proposed, and a Markov-based approach was applied to establish a life-cycle performance model with clear probability characteristics for SBDPS. Representative traffic conditions were designed using a uniform design method, and the LCC of SBDPS under representative traffic conditions and different credibility (construction quality as a random factor) was compared. The reliability of the LCC analysis approach was verified based on the uncertainty analysis method. Based on an expert-scoring approach, a user cost weight was obtained to ensure it is considered reasonably in the LCC analysis. Compared with the cumulative traffic volume, the cumulative equivalent single axle loads (CESAL) have a closer relationship with the LCC. The GA system has better LCC when the CESAL is less, while the EA system is just the opposite. The breaking point of CESAL for the LCC of the EA system and the GA system is 15 million times. The LCC analysis of SBDPS should consider the influence of random factors such as construction quality. The comprehensive LCC analysis approach in this paper can provide suggestions for bridge-management departments to make a reasonable selection on SBDPS.


Sign in / Sign up

Export Citation Format

Share Document