The Effect of Acceptor Content on the Efficiency of Organic Photovoltaic Cells

2012 ◽  
Vol 209-211 ◽  
pp. 1801-1804
Author(s):  
Jian Min Ye ◽  
Nan Hai Sun

Phase separation of the poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester(PCBM) active layer (ATL) was investigated by varying their relative ratio in the organic solar cells (OSCs).With the help of the UV/visible spectrophotometer, optical microscopy and scanning electron microscope,we found that the cluster of PCBM at the interface or surface was affected by Al cathode, the composition of the blends and thermal annealing. The disc-like shape crystals of PCBM substituted for the needle-like ones at higher PCBM compositions at the ATL/Al interface, which led to stronger contacts and bigger contact area. It could make short circuit current density increase, but may affect the blend morphology and result in parallel resistance and open circuit voltage decreased with the PCBM ratio increasing from 40 to 60%. The microstructure of the P3HT:PCBM ATL, determined by the composition dependent phase separation, supported the optimized performance of the OSCs with the composition of 40–50% PCBM.

2012 ◽  
Vol 535-537 ◽  
pp. 1258-1261
Author(s):  
Nan Hai Sun ◽  
Xiao Ying Chang

Phase separation of the poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester(PCBM) active layer (ATL) was investigated by varying their relative ratio in the organic solar cells (OSCs).With the help of the UV/visible spectrophotometer, optical microscopy and scanning electron microscope,we found that the cluster of PCBM at the interface or surface was affected by Al cathode, the composition of the blends and thermal annealing. The disc-like shape crystals of PCBM substituted for the needle-like ones at higher PCBM compositions at the ATL/Al interface, which led to stronger contacts and bigger contact area. It could make short circuit current density increase, but may affect the blend morphology and result in parallel resistance and open circuit voltage decreased with the PCBM ratio increasing from 40 to 60%. The microstructure of the P3HT:PCBM ATL, determined by the composition dependent phase separation, supported the optimized performance of the OSCs with the composition of 40–50% PCBM.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kurniawan Foe ◽  
Gon Namkoong ◽  
Matthew Samson ◽  
Enas M. Younes ◽  
Ilho Nam ◽  
...  

We fabricated a poly[3-hexylthiophene] (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) organic photovoltaic cells (OPCs) using TiOxinterfacial layer. We performed optimization processes for P3HT : PC61BM with the TiOxlayer. We found that a solution based TiOxlayer coated at a spin speed of 3000 rpm improved the photon absorption of the active layer. An optimized TiOxlayer was also used as the interfacial layer to investigate the stability of P3HT : PC61BM OPC. After 70 days of storage, we observed that the short-circuit current density (JSC) dropped by 16.2%, fill factor (FF) dropped by 10.6%, and power conversion efficiency (PCE) dropped approximately by 25%, while the open-circuit voltage (VOC) remained relatively stable. We found that a solution based TiOxlayer synthesized using a sol-gel chemistry method was very effective in protecting the active layer from degradation.


Author(s):  
Nur Shakina Mohd Shariff ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamad Rusop Mahmood

There has been an increasing interest towards organic solar cells after the discovery of conjugated polymer and bulk-heterojunction concept. Eventhough organic solar cells are less expensive than inorganic solar cells but the power conversion energy is still considered low. The main objective of this research is to investigate the effect of the P3HT’s thickness and concentration towards the efficiency of the P3HT:Graphene solar cells. A simulation software that is specialize for photovoltaic called SCAPS is used in this research to simulate the effect on the solar cells. The solar cell’s structure will be drawn inside the simulation and the parameters for each layers is inserted. The result such as the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), efficiency (η), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristic will be calculated by the software and all the results will be put into one graph.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 450 ◽  
Author(s):  
Miron Krassas ◽  
Christos Polyzoidis ◽  
Pavlos Tzourmpakis ◽  
Dimitriοs M. Kosmidis ◽  
George Viskadouros ◽  
...  

A conjugated, ladder-type multi-fused ring 4,7-dithienbenzothiadiazole:thiophene derivative, named as compound ‘T’, was for the first time incorporated, within the PTB7:PC71BM photoactive layer for inverted ternary organic solar cells (TOSCs) realization. The effective energy level offset caused by compound T between the polymeric donor and fullerene acceptor materials, as well as its resulting potential as electron cascade material contribute to an enhanced exciton dissociation, electron transfer facilitator and thus improved overall photovoltaic performance. The engineering optimization of the inverted TOSC, ITO/PFN/PTB7:Compound T(5% v/v):PC71BM/MoO3/Al, resulted in an overall power conversion efficiency (PCE) of 8.34%, with a short-circuit current density (Jsc) of 16.75 mA cm−2, open-circuit voltage (Voc) of 0.74 V and a fill factor (FF) of 68.1%, under AM1.5G illumination. This photovoltaic performance was improved by approximately 12% with respect to the control binary device.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 803-807
Author(s):  
T. S. KRISHNAN ◽  
S. SUNDAR KUMAR IYER

This work addresses the shelf life characteristics of P3HT: PCBM blend based organic solar cells (OSC) fabricated with Ca–Al and LiF–Al cathodes. Some of these devices are encapsulated in nitrogen ambient and some in room ambient. Device electrical characteristics are studied under both dark and light. In the analysis under dark ambient conditions, the degradation in peak dark current is monitored over time (in days) and an empirical model is postulated for the degradation based on statistical curve fitting techniques. In the analysis under light, degradation of parameters such as fill factor (FF), open circuit voltage (V oc ) and short circuit current density (J sc ) is monitored over time in these devices (for different cathodes and different ambients) and the results are analyzed and compared. Also, accelerated stress tests are conducted wherein the devices are subjected to continuous illumination for a period of 1.5 h under two different intensities (0.76 sun and 1 sun) and again, the results are analyzed and compared. A model is fitted to the observed degradation in normalized J sc and the degradation constants (k deg ) are obtained. It is seen that the devices fabricated with cathode as LiF–Al and being encapsulated in nitrogen ambient provide the best performance over time.


2015 ◽  
Vol 22 (06) ◽  
pp. 1550072
Author(s):  
SUDIP ADHIKARI ◽  
HIDEO UCHIDA ◽  
MASAYOSHI UMENO

In this paper, composite carbon nanotubes (C-CNTs); single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are synthesized using an ultrasonic nebulizer in a large quartz tube for photovoltaic device fabrication in poly-3-octyl-thiophene (P3OT)/ n - Si heterojunction solar cells. We found that the device fabricated with C-CNTs shows much better photovoltaic performance than that of a device without C-CNTs. The device with C-CNTs shows open-circuit voltage (Voc) of 0.454 V, a short circuit current density (Jsc) of 12.792 mA/cm2, fill factor (FF) of 0.361 and power conversion efficiency of 2.098 %. Here, we proposed that SWCNTs and MWCNTs provide efficient percolation paths for both electron and hole transportation to opposite electrodes and leading to the suppression of charge carrier recombination, thereby increasing the photovoltaic device performance.


2015 ◽  
Vol 25 (2) ◽  
pp. 139
Author(s):  
Tran Thi Thao ◽  
Vu Thi Hai ◽  
Nguyen Nang Dinh ◽  
Le Dinh Trong

By using spin-coating technique, a low bandgap conjugated polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopen-ta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT)  and its composite thin films have been prepared. The optical absorption and photoconductive properties with over a wide spectral range, from 350 to 950  nm, were characterized. The obtained results showed that PCPDTBT:10 wt% CdSe  composite is the most suitable for efficient light-harvesting in polymer-based photovoltaic cells. The photoelectrical conversion efficiency (PCE) of the device with  a multilayer structure of ITO/PEDOT/ PCPDTBT:CdSe /LiF/Al  reached a value as large as 1.34% with an open-circuit voltage (Voc) = 0.57 V, a short-circuit current density (Jsc) = 4.29 mA/cm2, and a fill factor (FF) = 0.27. This suggests a useful application in further fabrication of quantum dots/polymers based solar cells.


2021 ◽  
Vol 21 (11) ◽  
pp. 5749-5755
Author(s):  
Chang Li ◽  
Wei Li ◽  
Xiaoxiang Sun ◽  
Jifei Wang ◽  
Jiayou Tao ◽  
...  

As a fullerene derivative, IC70BA is widely used in the ternary organic solar cells (TOSCs) to increase the open circuit voltage (Voc) of the devices. Unfortunately, most of the literature shows that IC70BA will lead to a reduction in the short-circuit current density (Jsc) and fill factor (FF). In this work, IC70BA is added to the PTB7:PC70BM binary system to form the ternary system, which is composed of one donor and two fullerene acceptors. Surprisingly, the addition of IC70BA does not immediately lead to a decrease in Jsc and FF. In fact, the appropriate weight ratio of IC70BA in fullerenes can simultaneously increase the Voc, Jsc, and FF of the TOSCs. The synergistic optimization of the surface and bulk morphology of the ternary active layer suppresses the attenuation of Jsc and FF. The smooth surface and suitable phase separation size effectively guarantee the separation, transport and extraction of the charge. Moreover, the addition of IC70BA can significantly improve the hole transport capacity of the active layer, and the optimal hole mobility is 5.13 – 10”4 cm2V–1S–1. Finally, the TOSCs with 10% weight ratio of IC70BA gives the optimal PCE of 9.24% and ideality factor of 2.3.


2008 ◽  
Vol 1091 ◽  
Author(s):  
Osamu Yoshikawa ◽  
Taro Sonobe ◽  
Takashi Sagawa ◽  
Susumu Yoshikawa

AbstractThe performance of the devices of bulk heterojunction polymer-based solar cells were investigated by using poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as light absorption (viz. active) layer, with TiOx as interlayer as follows: ITO/PEDOT:PSS/P3HT-PCBM/TiOx/Al [1] through the treatment of microwave irradiation (single mode of 2.45 GHz, 800 W for 1, 2.5, or 5 min). Such treatments enabled to increase the short-circuit current density Jsc (from 4.53 mA cm−2 to 7.27 mA cm−2) and fill factor FF (from 0.41 to 0.66) of the cell, though the open circuit voltage Voc was decreased (from 0.61 V to 0.57 V) along the irradiation. Absorption spectra of P3HT-PCBM blended film before and after the microwave treatment were observed. Shoulders at 550 nm and 600 nm appeared after the irradiation. This result implies that the microcrystallization of P3HT was slightly promoted through the microwave treatment.


Author(s):  
Xuexiang Huang ◽  
Jiyeon Oh ◽  
Yujun Cheng ◽  
Bin Huang ◽  
Shanshan Ding ◽  
...  

Overlapping near-infrared absorption not only does not reduce short-circuit current density (JSC), but also can ensure a high average visible transmittance (AVT) and get a high open-circuit voltage (VOC) and power conversion efficiency (PCE) at the same time.


Sign in / Sign up

Export Citation Format

Share Document