Study on the Tidal Current and Suspended Sediment Transport in Taizhou Bay

2012 ◽  
Vol 212-213 ◽  
pp. 55-58
Author(s):  
Jie He ◽  
Xin Sheng Zhao ◽  
Yu Fan Zhu

Taizhou Bay is an estuary with high tidel range, middle tidal current and low sediment concentration. For the sea floor is very dense, it is stable in the usual water regimen. The numerical model is introduced to simulate the suspended sediment transport in Taizhou Bay. And the recent hydrologic data and the seabed change have been validated by the numerical model. The movement of tidal current and sediment in Dagagn Bay are simulated, and the sediment siltation in port designed is calculated by the model. The results show that the sediment source is from the shoal produced by the ebb current, and the sediment silting is decreased two-thirds by the cofferdam back of the bay, because the way of the suspended sediment is stopped by the cofferdam from the shoal to the harbor.

1974 ◽  
Vol 1 (14) ◽  
pp. 66 ◽  
Author(s):  
W.T. Bakker

In this paper first a numerical model is described concerning the velocity distribution in an oscillatory flow, respectively without and with resultant current . From the momentaneous velocity gradients eddy viscosities are derived . Using the approach of VANONI [13 , a numerical model is given for the calculation of sediment concentration and suspended sediment transport. In order to give reliable results, the bed-load concentration should be known This will be investigated in the future; at the moment the model only provides qualitative results.


2009 ◽  
Vol 32 (8) ◽  
pp. 1187-1196 ◽  
Author(s):  
Kim Dan Nguyen ◽  
Sylvain Guillou ◽  
Julien Chauchat ◽  
Nathaly Barbry

2021 ◽  
Vol 9 (11) ◽  
pp. 1300
Author(s):  
Troels Aagaard ◽  
Joost Brinkkemper ◽  
Drude F. Christensen ◽  
Michael G. Hughes ◽  
Gerben Ruessink

The existence of sandy beaches relies on the onshore transport of sand by waves during post-storm conditions. Most operational sediment transport models employ wave-averaged terms, and/or the instantaneous cross-shore velocity signal, but the models often fail in predictions of the onshore-directed transport rates. An important reason is that they rarely consider the phase relationships between wave orbital velocity and the suspended sediment concentration. This relationship depends on the intra-wave structure of the bed shear stress and hence on the timing and magnitude of turbulence production in the water column. This paper provides an up-to-date review of recent experimental advances on intra-wave turbulence characteristics, sediment mobilization, and suspended sediment transport in laboratory and natural surf zones. Experimental results generally show that peaks in the suspended sediment concentration are shifted forward on the wave phase with increasing turbulence levels and instantaneous near-bed sediment concentration scales with instantaneous turbulent kinetic energy. The magnitude and intra-wave phase of turbulence production and sediment concentration are shown to depend on wave (breaker) type, seabed configuration, and relative wave height, which opens up the possibility of more robust predictions of transport rates for different wave and beach conditions.


2004 ◽  
Vol 32 (2) ◽  
pp. 239-255 ◽  
Author(s):  
P. C. Sinha ◽  
Pragya Guliani ◽  
G. K. Jena ◽  
A. D. Rao ◽  
S. K. Dube ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 192 ◽  
Author(s):  
Yuting Li ◽  
Zhiyao Song ◽  
Guoqiang Peng ◽  
Xuwen Fang ◽  
Ruijie Li ◽  
...  

This study presents an incorporation and application of a two-dimensional, unstructured-grid hydrodynamic model with a suspended sediment transport module in Daishan, China. The model is verified with field measurement data from 2017: water level, flow velocities and suspended sediment concentration (SSC). In the application on the Daishan, the performance of the hydrodynamic model has been satisfactorily validated against observed variations of available measurement stations. Coupled with the hydrodynamic model, a sediment transport model has been developed and tested. The simulations agreed quantitatively with the observations. The validated model was applied to the construction of breakwaters and docks under a different plan. The model can calculate the flow field and siltation situation under different breakwater settings. After we have analyzed the impact of existing breakwater layout schemes and sediment transport, a reasonable plan will be selected. The results show that the sea area near the north of Yanwo Shan and Dongken Shan has a large flow velocity exceeding 2.0 m/s and the flow velocity within the isobath of 5 m is small, within 0.6 m/s. According to the sediment calculation, the dock project is feasible. However, the designed width of the fairway should be increased to ensure the navigation safety of the ship according to variation characteristics of cross flow velocity in channel.


Sign in / Sign up

Export Citation Format

Share Document