scholarly journals Modeling Hydro-Dynamics in a Harbor Area in the Daishan Island, China

Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 192 ◽  
Author(s):  
Yuting Li ◽  
Zhiyao Song ◽  
Guoqiang Peng ◽  
Xuwen Fang ◽  
Ruijie Li ◽  
...  

This study presents an incorporation and application of a two-dimensional, unstructured-grid hydrodynamic model with a suspended sediment transport module in Daishan, China. The model is verified with field measurement data from 2017: water level, flow velocities and suspended sediment concentration (SSC). In the application on the Daishan, the performance of the hydrodynamic model has been satisfactorily validated against observed variations of available measurement stations. Coupled with the hydrodynamic model, a sediment transport model has been developed and tested. The simulations agreed quantitatively with the observations. The validated model was applied to the construction of breakwaters and docks under a different plan. The model can calculate the flow field and siltation situation under different breakwater settings. After we have analyzed the impact of existing breakwater layout schemes and sediment transport, a reasonable plan will be selected. The results show that the sea area near the north of Yanwo Shan and Dongken Shan has a large flow velocity exceeding 2.0 m/s and the flow velocity within the isobath of 5 m is small, within 0.6 m/s. According to the sediment calculation, the dock project is feasible. However, the designed width of the fairway should be increased to ensure the navigation safety of the ship according to variation characteristics of cross flow velocity in channel.

Author(s):  
Hong-Ming Liu ◽  
Wen-cheng Liu ◽  
Chih-Yu Chiu

A three-dimensional, unstructured grid, hydrodynamic and suspended-sediment transport model (i.e., SELFE-SED) was developed to simulate temporal and spatial variations of suspended sediment and was applied to the subtropical subalpine Tsuei-Feng Lake (TFL) of Taiwan. The model was validated with measured water level and suspended‑sediment concentration in 2009, 2010, and 2011. The overall model simulation results are in quantitative agreement with the observational data. The validated model was then applied to explore the most important parameter that affects the suspended-sediment concentration and to investigate the effect of wind stress on the mean current and suspended‑sediment distribution in this shallow lake. Modeling results of sensitivity analysis reveal that the settling velocity is a crucial parameter and erosion rate is less important in the suspended-sediment transport model. Remarkable lake circulation was found based on the strength of wind speed and wind direction. Strong wind would result in higher mean current in the top layer and suspended-sediment distribution in the top and bottom layers. This study demonstrated that the wind stress played a significant influence on mean circulation and suspended-sediment transport in a shallow lake.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wei Zhang ◽  
Qiong Jia ◽  
Xiaowen Chen

Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Juan Antonio García-Aragón ◽  
Klever Izquierdo-Ayala ◽  
María Mercedes Castillo-Uzcanga ◽  
Laura Carrillo-Bibriezca ◽  
Humberto Salinas-Tapia

2014 ◽  
Vol 18 (8) ◽  
pp. 3033-3053 ◽  
Author(s):  
N. V. Manh ◽  
N. V. Dung ◽  
N. N. Hung ◽  
B. Merz ◽  
H. Apel

Abstract. Sediment dynamics play a major role in the agricultural and fishery productivity of the Mekong Delta. However, the understanding of sediment dynamics in the delta, one of the most complex river deltas in the world, is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains, and the scarcity of observations. This study quantifies, for the first time, the suspended sediment transport and sediment deposition in the whole Mekong Delta. To this end, a quasi-2D hydrodynamic model is combined with a cohesive sediment transport model. The combined model is calibrated using six objective functions to represent the different aspects of the hydraulic and sediment transport components. The model is calibrated for the extreme flood season in 2011 and shows good performance for 2 validation years with very different flood characteristics. It is shown how sediment transport and sediment deposition is differentiated from Kratie at the entrance of the delta on its way to the coast. The main factors influencing the spatial sediment dynamics are the river and channel system, dike rings, sluice gate operations, the magnitude of the floods, and tidal influences. The superposition of these factors leads to high spatial variability of sediment transport, in particular in the Vietnamese floodplains. Depending on the flood magnitude, annual sediment loads reaching the coast vary from 48 to 60% of the sediment load at Kratie. Deposited sediment varies from 19 to 23% of the annual load at Kratie in Cambodian floodplains, and from 1 to 6% in the compartmented and diked floodplains in Vietnam. Annual deposited nutrients (N, P, K), which are associated with the sediment deposition, provide on average more than 50% of mineral fertilizers typically applied for rice crops in non-flooded ring dike floodplains in Vietnam. Through the quantification of sediment and related nutrient input, the presented study provides a quantitative basis for estimating the benefits of annual Mekong floods for agriculture and fishery, and is an important piece of information with regard to the assessment of the impacts of deltaic subsidence and climate-change-related sea level rise on delta morphology.


2013 ◽  
Vol 46 (1) ◽  
pp. 136-155 ◽  
Author(s):  
Sandun Illangasinghe ◽  
Tilak Hewawasam

Estimation of suspended sediment concentration (SSC) in rivers is a prerequisite to address many issues related to hydrology. Therefore, we make an attempt in this study to introduce a low-cost technique to estimate the SSC. Both surface and depth-and-width-integrated water samples were collected and measured for SSC from eight tributaries in Sri Lanka over a complete hydrological year. A site-specific calibration curve was established between SSCs measured by two methods for each tributary where R2 varied from 0.72 to 0.99. The same relationship is developed in general for all tributaries studied in the hilly terrain of Sri Lanka. This generic model exhibits a strong correlation (R2 = 0.91), which will be useful to calculate an accurate SSC from a simply measured surface SSC. To select the appropriate gauging method, be it surface or depth-and-width-integrated sampling, a new concept of surface sampling threshold factor (SSTF) is introduced. The preliminarily analysis on SSTF using available data for the studied catchments reveals that surface sampling is only adequate for estimating a representative SSC if SSTF varies from 35 to 45. When SSTF deviates from this range, the SSC measured by surface sampling needs to be adjusted by depth-and-width-integrated sampling.


2012 ◽  
Vol 212-213 ◽  
pp. 55-58
Author(s):  
Jie He ◽  
Xin Sheng Zhao ◽  
Yu Fan Zhu

Taizhou Bay is an estuary with high tidel range, middle tidal current and low sediment concentration. For the sea floor is very dense, it is stable in the usual water regimen. The numerical model is introduced to simulate the suspended sediment transport in Taizhou Bay. And the recent hydrologic data and the seabed change have been validated by the numerical model. The movement of tidal current and sediment in Dagagn Bay are simulated, and the sediment siltation in port designed is calculated by the model. The results show that the sediment source is from the shoal produced by the ebb current, and the sediment silting is decreased two-thirds by the cofferdam back of the bay, because the way of the suspended sediment is stopped by the cofferdam from the shoal to the harbor.


Sign in / Sign up

Export Citation Format

Share Document