The Use of TiAlN Coated Carbide Tool when Finish Machining Stainless Steel

2012 ◽  
Vol 224 ◽  
pp. 204-207
Author(s):  
Jozef Jurko ◽  
Anton Panda ◽  
Marcel Behún

This article presents conclusions of use TiAlN at drilling of a new austenitic stainless steels. This article presents the results of experiments that concerned the verification of the cutting tool wear. The results of cutting zone evaluation under cutting conditions (cutting speed vc=60 m/min, depth of cut ap= 3.0 mm and feed f= 0.04 mm per rev.) .

2012 ◽  
Vol 217-219 ◽  
pp. 2202-2205 ◽  
Author(s):  
Jozef Jurko ◽  
Anton Panda ◽  
Marcel Behún ◽  
Andrej Berdis ◽  
Ján Gecák ◽  
...  

This article presents the results of experiments that concerned on the tool wear and tool wear mechanisms by drilling of a new Extra Low Carbon (ELC) austenitic stainless steel X02Cr16Ni10MoTiN. This article presents conclusions of machinability tests on new austenitic stainless steels X02Cr16Ni10MoTiN. The results of cutting zone evaluation under cutting conditions (cutting speed in interval vc=30-50 m/min, depth of cut ap=4.0 mm and feed f=0.02-0.08 mm per rev.).


2012 ◽  
Vol 268-270 ◽  
pp. 473-476 ◽  
Author(s):  
Jozef Jurko ◽  
Anton Panda ◽  
Marcel Behún

This article presents the results of experiments that concerned on the surface roughness quality by drilling of a new Extra Low Carbon (ELC) austenitic stainless steel X01Cr14Ni9TiN. This article presents conclusions of machinability tests on new austenitic stainless steels X01Cr14Ni9TiN. The results of cutting zone evaluation under cutting conditions (cutting speed in interval vc=40-60 m/min, depth of cut ap=2.5 mm and feed f=0.01-0.12 mm per rev.).


2012 ◽  
Vol 229-231 ◽  
pp. 415-418 ◽  
Author(s):  
Jozef Jurko ◽  
Anton Panda

This article presents conclusions of machinability tests on new austenitic stainless steels DIN 1.4301 and verified with software of CA-X systems. This article presents the results of experiments that concerned the verification of machined surface conditions of workpieces from a austenitic stainless steel DIN 1.4301 and cutting tool wear. The results of cutting zone evaluation under cutting conditions (cutting speed vc=50 m/min, depth of cut ap= 2.75 mm and feed f= 0.06 mm per rev.) are a definition of shear level angle and the texture angle. For DIN 1.4301 steel Φ1 is 38°. The acquired results are interesting in that for the defined conditions we can achieve a quality outer surface after cutting with roughness parameters down to around 0.82 µm.


2010 ◽  
Vol 39 ◽  
pp. 369-374 ◽  
Author(s):  
Jozef Jurko

In this paper presents the conclusions of machinability tests on a new stainless steel X4Cr17Ni8TiN, which applicated in food processing industry, and describes important concurrent parameters for the cutting zone during the process of finish drilling. This paper presents the results of experiments that concerned the verification of temperature fields in tool and the machined surface by drilling of stainless steels X4Cr17Ni8TiN. The content of this paper also focuses on the analysis of selected domains through basic indicators of steel machinability: cutting edge tool life, surface roughness, and wear mechanisms. The machinability of stainless steels is examined based on the cutting tests. The effect of cutting speed are analysed by tool wear mechanisms, and temperature tool. Based on the cutting tests, cutting speeds of 40 to 80 m/min, feed rate of 0.04 to 0.1 mm per rev.and solid a new design of screw drill from sintered carbide with hydraulic holder. Diameter of screw drill is 5.5 mm. Tool wear criterion of VBK value 0.12 mm. Wear mechanisms analysed by Semi Electron Microscopy (SEM).


2015 ◽  
Vol 1115 ◽  
pp. 100-103
Author(s):  
A.K.M. Nurul Amin ◽  
Muammer Din Arif ◽  
Siti Aminatuzzuhriyah B. Haji Subir ◽  
Fawaz Mohsen Abdullah

Chatter is a type of intensive self-excited vibration commonly encountered in machining. It reduces productivity and precision, and is more noticeable in the machining of difficult-to-cut alloys like hardened steel. In such cases chatter causes excessive tool wear, especially flank wear, which in turn affects the stability of the cutting edge leading to premature tool failure, poor surface finish, and unsatisfactory machining performance. Nowadays, however, the demand is for fine finish, high accuracy, and low operation costs. Therefore, any technique which significantly reduces chatter is profitable for the industry. This paper demonstrates the viability and effectiveness of a novel chatter control strategy in the turning of (AISI 304) stainless steel by using permanent bar magnets. Reduction in chatter and corresponding tool flank wear are compared from results for both undamped and magnetically damped turning using coated carbide inserts. Special fixtures and keyway were made from mild steel in order to affix the magnets on the lathe’s carriage. The two ferrite magnets (1500 Gauss each) were placed below and beside the tool shank for damping from Z and X directions, respectively. Response surface methodology (RSM) was used to design the experimental runs in terms of the three primary cutting parameters: cutting speed, feed, and depth of cut. A Kistler 50g accelerometer measured the vibrations. The data was subsequently processed using DasyLab (version 6) software. The tool wear was measured using scanning electron microscope (SEM). Results indicate that this damping setup can reduce vibration amplitude by 47.36% and tool wear by 63.85%, on average. Thus, this technique is a simple and economical way of lowering vibration and tool wear in the turning of stainless steel.


Author(s):  
Shirish Kadam ◽  
Rohit Khake ◽  
Sadaiah Mudigonda

This paper addresses experimental investigations of turning Super Duplex Stainless Steel (DSS) with uncoated and Physical Vapor Deposition PVD coated carbide inserts under dry cutting condition. The parametric influence of cutting speed, feed and depth of cut on the surface finish and machinability aspects such as cutting force and tool wear are studied and conclusions are drawn. The turning parameters considered are cutting speed of 60–360 m/min, feed of 0.05–0.35 mm/rev and depth of cut of 0.5–2 mm. Tool wear was analysed by using an optical microscope and scanning electron microscope. The study includes identification of tool wear mechanism occurring on the flank face. The characterization of the coating was made by Calo test for measurement of coating thickness and nanoindentation for hardness. Comparison of performance of PVD coatings TiAlSiN (3.3μm), AlTiN (3 μm) and AlTiN (7 μm) have been made in terms of tool life. The coatings were produced on P-grade tungsten carbide inserts by using High Power Impulse Magnetron Sputtering (HiPIMS) technology. The findings of the study also provide the economic solution in case of dry turning of super DSS.


Here, we found and observed different results of experimental work in dry turning of S31700 grade stainless steels using coated and uncoated cemented carbides. The turning tests were conducted at three different cutting speeds (150and 200m/min) while feed rate and depth of cut were kept constant at 0.3 mm/rev and 1 mm, respectively. The cutting tools used were ISO P30 uncoated and TiN-TiCN-Al2O3 -ZrCN coated cemented carbides. We found the influences of cutting speed on the average flank wear. The worn parts of the cutting tools were also examined using optical microscopy and SEM. Here we concluded that cutting speed significantly affected the average flank wear. The multilayer effects superior resistance to tool wear compared to its uncoated counterpart in the entire range of cutting speeds during turning of S31700 stainless (AISI317) steel.


2013 ◽  
Vol 394 ◽  
pp. 228-231
Author(s):  
Jozef Jurko ◽  
Anton Panda

The basic hypothesis of this article focuses on the study changes in the tool wear during drilling of stainless steels ELC X04Cr18Ni9Ti. The problem of drilling holes with diameter D=2 to 8 mm resides in the fact that 20 to 30% of these holes do not comply with prescribed requested requirements. This article presents the results of experiments focusing on the study of the damage process in helical drills with diameter d=8.0 mm when drilling into austenitic stainless steel ELC X04Cr18Ni9Ti. This study also includes an analysis of accompanying phenomena in the cutting zone by measuring some selected parameters.


2012 ◽  
Vol 426 ◽  
pp. 186-189
Author(s):  
X.Q Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
X.L. Fu ◽  
Y. Z. Pan

Ti6Al4V is a difficult to machine alloy with low cutting efficiency and server tool wear. A series of orthogonal turning tests with coated carbide in higher speed scale was carried out on a CA6140 lathe. The experiential functions of tool life based on orthogonal experiment were developed. The tool wear morphologies were examined by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS), adhesion, diffusion and micro-chipping were the major wear mechanisms of coated carbide tool. Finally, the cutting parameters of coated carbide tool in Ti6Al4V dry turning were optimized based on tool life-efficiency contour analysis, in same cutting efficiency, the lower cutting speed and larger depth of cut are the better selection in Ti6Al4V turning for coated carbide tool.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Sign in / Sign up

Export Citation Format

Share Document