Preliminary Design of Solar Powered Unmanned Aerial Vehicle

2012 ◽  
Vol 225 ◽  
pp. 315-322 ◽  
Author(s):  
Sumit Jashnani ◽  
Prahsant Shaholia ◽  
Ali Khamker ◽  
Muhammad Ishfaq ◽  
Tarek Nada

Applications involving the use of alternate, renewable energy sources are expanding exponentially, and are in high demand. Solar power has long been harnessed for such applications and aviation is no stranger to it with its strong drive towards becoming an environment-friendly industry. This paper describes a straight forward procedure to design and test a solar powered unmanned aerial vehicle that can fly continuously for 24 hours at any day of the year. The paper introduces the modeling and preparation of hardware testing of the propulsion and power sub-system. The main components of this sub-system are solar panels, the electromechanical drive train and the propeller. A design for a thrust stand to measure the performance of the system is also introduced.

Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 44
Author(s):  
Yau Hei Chu ◽  
Chun Leung Ho ◽  
Yoon Jo Lee ◽  
Boyang Li

Having an exciting array of applications, the scope of unmanned aerial vehicle (UAV) application could be far wider one if its flight endurance can be prolonged. Solar-powered UAV, promising notable prolongation in flight endurance, is drawing increasing attention in the industries’ recent research and development. This work arose from a Bachelor’s degree capstone project at Hong Kong Polytechnic University. The project aims to modify a 2-metre wingspan remote-controlled (RC) UAV available in the consumer market to be powered by a combination of solar and battery-stored power. The major objective is to greatly increase the flight endurance of the UAV by the power generated from the solar panels. The power system is first designed by selecting the suitable system architecture and then by selecting suitable components related to solar power. The flight control system is configured to conduct flight tests and validate the power system performance. Under fair experimental conditions with desirable weather conditions, the solar power system on the aircraft results in 22.5% savings in the use of battery-stored capacity. The decrease rate of battery voltage during the stable level flight of the solar-powered UAV built is also much slower than the same configuration without a solar-power system.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Haruka Tsunetaka ◽  
Slim Mtibaa ◽  
Shiho Asano ◽  
Takashi Okamoto ◽  
Ushio Kurokawa

AbstractAs wood pieces supplied by landslides and debris flows are one of the main components of ecological and geomorphic systems, the importance of quantifying the dimensions of the wood pieces is evident. However, the low accessibility of disturbed channels after debris flows generally impedes accurate and quick wood-piece investigations. Thus, remote-sensing measurements for wood pieces are necessitated. Focusing on sub-watersheds in coniferous and broadleaf forests in Japan (the CF and BF sites, respectively), we measured the lengths of wood pieces supplied by landslides (> 0.2 m length and > 0.03 m diameter) from orthophotos acquired using a small unmanned aerial vehicle (UAV). The measurement accuracy was analyzed by comparing the lengths derived from the UAV method with direct measurements. The landslides at the CF and BF sites were triggered by extremely heavy rainfalls in 2017 and 2018, respectively. UAV flights were operated during February and September 2019 at the CF site and during November 2018 and December 2019 at the BF site. Direct measurements of wood pieces were carried out on the date of the respective second flight date in each site. When both ends of a wood piece are satisfactorily extracted from an orthophoto acquired by the UAV, the wood-piece lengths at the CF site can be measured with an accuracy of approximately ±0.5 m. At the BF site, most of the extracted lengths were shorter than the directly measured lengths, probably because the complex structures of the root wad and tree crown reduced the visibility. Most wood pieces were discharged from landslide scars at the BF site, but at the CF site, approximately 750 wood pieces remained in the landslide scars approximately 19 months after the landslide occurrence. The number of wood pieces in the landslide scars of the CF site increased with increasing landslide area, suggesting that some wood pieces can be left even if large landslides occur. The lengths and locations of the entrapped wood pieces at both sites were not significantly changed between the two UAV flight dates. However, during this period, the rainfall intensities around the CF site measured by the closest rain-gauge of the Japan Meteorological Agency reached their second highest values from 1976 to 2019, which exceeded the 30-year return period. This suggests that most of the entrapped wood pieces rarely migrated even under intense rainfall.


2021 ◽  
Vol 295 ◽  
pp. 117031
Author(s):  
Chaoyu Zhang ◽  
Chengming Zhang ◽  
Liyi Li ◽  
Qingbo Guo

2020 ◽  
Vol 10 (4) ◽  
pp. 1300 ◽  
Author(s):  
Xin Zhao ◽  
Zhou Zhou ◽  
Xiaoping Zhu ◽  
An Guo

This paper describes our work on a small, hand-launched, solar-powered unmanned aerial vehicle (UAV) suitable for low temperatures and high altitudes, which has the perpetual flight potential for conservation missions for rare animals in the plateau area in winter. Firstly, the conceptual design method of a small, solar-powered UAV based on energy balance is proposed, which is suitable for flight in high-altitude and low-temperature area. The solar irradiance model, which can reflect the geographical location and time, was used. Based on the low-temperature discharge test of the battery, a battery weight model considering the influence of low temperature on the battery performance was proposed. Secondly, this paper introduces the detailed design of solar UAV for plateau area, including layout design, structure design, load, and avionics. To increase the proportion of solar cells covered, the ailerons were removed and a rudder was used to control both roll and yaw. Then, the dynamics model of an aileron-free layout UAV was developed, and the differences in maneuverability and stability of aileron-free UAV in plateau and plain areas were analyzed. The control law and trajectory tracking control law were designed for the aileron-free UAV. Finally, the flight test was conducted in Qiangtang, Tibet, at an altitude of 4500 m, China’s first solar-powered UAV to take off and land above 4500 m on the plateau in winter (−30 °C). The test data showed the success of the scheme, validated the conceptual design method and the success of the control system for aileron-free UAV, and analyzed the feasibility of perpetual flight carrying different loads according to the flight energy consumption data.


Author(s):  
V. Y. Stepanov

The article gives a classification of the main components of unmanned aerial vehicle (UAV) systems, gives the areas in which the application of UAVs is actual in practice today. Further, the UAV is considered in more detail from the point of view of its flight dynamics analysis, the equation necessary for creating a mathematical model, as well as the model of an ordinary dynamic system as a non-stationary nonlinear controlled object, is given. Next, a description of the developed software for modeling and a description of program algorithm are given. Finally, a conclusion describes the necessary directions for further scientific researches.


2021 ◽  
Author(s):  
M. Karthik ◽  
S. Usha ◽  
B. Predeep ◽  
G. R. Sai Saran ◽  
G. Sridhar ◽  
...  

2018 ◽  
Vol 41 (2) ◽  
pp. 497-505 ◽  
Author(s):  
Mingjian Wu ◽  
Tianhang Xiao ◽  
Haisong Ang ◽  
Hongda Li

Sign in / Sign up

Export Citation Format

Share Document