scholarly journals Finite Element Model Updating of a Thin Wall Enclosure under Impact Excitation

2010 ◽  
Vol 24-25 ◽  
pp. 337-342 ◽  
Author(s):  
O.S. David-West ◽  
J. Wang ◽  
R. Cooper

Simulation result of a structural dynamics problem is dependent on the techniques used in the finite element model and the major task in model updating is determination of the changes to be made to the numerical model so that dynamic properties are comparable to the experimental result. In this paper, the dynamic analysis of a thin wall structure ( approx. 1.5±0.1 mm thick) was realized using the Lanczos tool to extract the modes between 0 and 200 Hz, but the interest was to achieve a good aggreement between the first ten natural frequencies. A shell element with mid size nodes was used to improve the finite element result and the model was tunned using the damping constant, material properties and discretization. The correlation of the results from the impact excitation response test and the finite element was significantly improved. A correlation coefficient of 0.99 was achieved after tunning the model.

2009 ◽  
Vol 413-414 ◽  
pp. 785-792 ◽  
Author(s):  
Yang Liu ◽  
Zhong Dong Duan ◽  
Hui Li

Finite element model updating aims at reconciling the analytical model with the test one, to acquire a refined model with high-fidelity in structural dynamic properties. However, testing data are inevitable polluted by noises. In this study, the mode parameters and design variables are modeled as fuzzy variables, and a fuzzy model updating method is developed. Instead of a single optimal model, a set of satisfactory models is obtained. The most physically compatible solution is sorted by insights to the structures. The proposed method is applied to a real concrete bridge, for which a physically meaningful model is identified.


2010 ◽  
Vol 163-167 ◽  
pp. 2843-2847
Author(s):  
Li Xian Wang ◽  
Sheng Kui Di

Based on random vibration theory, virtual response is obtained from the measured acceleration signal of Yantan Yellow River Bridge of Lanzhou under ambient excitation, Yantan Yellow River bridge's modal parameters were identified by using the peak picking and stochastic subspace identification, analyzed from theoretical and experimental aspects, compared with the finite element model results and verified the reliability of recognition results. The identified dynamic properties can be served as the basis in the finite element model updating, damage detection, condition assessment and health monitoring of the bridge.


Author(s):  
Carlo Baggio ◽  
Valerio Sabbatini ◽  
Silvia Santini ◽  
Claudio Sebastiani

AbstractUnderstanding the behavior of historic structures that have undergone structural changes, restorations, and damage over time is still a significant challenge for structural engineers, particularly in those countries subject to high seismic risk, such as Italy. The study of built heritage for its prevention and conservation is an active research topic, due to the numerous uncertainties present in historic structures. Finite element modelling has become the most common and accessible method to study the behavior of complex masonry structures, however, the gap between numerical and experimental analysis may lead to erroneous results. Model updating techniques can reduce the discrepancy between the behavior of the numerical models and the testing results. The goal of this work is to illustrate a methodology to integrate the information derived from local, global, and geotechnical investigations into the finite element model of the masonry historical church of San Giovanni in Macerata, considering the Douglas–Reid model updating method. The PRiSMa laboratory of Roma Tre University carried out local investigations such as sonic tomography, video endoscopy and double flat jack tests, along with five ambient vibration tests that were processed through the operational modal analysis to extrapolate the dynamic properties of the building (modal frequency, modal shape vector and modal damping). The combined use of global, local and geotechnical information implemented in the methodology effectively reduced the uncertainties of the model and led the refinement and validation of the most relevant structural parameters.


2012 ◽  
Vol 215-216 ◽  
pp. 1191-1196 ◽  
Author(s):  
Xiao Ming Yuan ◽  
Li Jie Zhang ◽  
Xin Ying Chen ◽  
Bing Du ◽  
Bao Hua Li ◽  
...  

In order to predict the result of impact test in the design phase and reduce the experimental times, which can save cost and shorten development cycle, a finite element model of aluminum alloy wheel 13-degree impact test is established based on Abaqus. All mechanical parts such as the standard impact block, the assembly of the wheel and the tire, the support and bolts are included in the finite element model. The predicted result of finite element analysis and the experimental result agree very well shows the finite element model is correct. The equivalent plastic strain value was also put forward as fracture criterion for the wheel in the impact test which realizes the transition from the qualitative analysis to the quantitative analysis in the development process of aluminum alloy wheel.


2010 ◽  
Vol 24 (7) ◽  
pp. 2137-2159 ◽  
Author(s):  
J.L. Zapico-Valle ◽  
R. Alonso-Camblor ◽  
M.P. González-Martínez ◽  
M. García-Diéguez

Sign in / Sign up

Export Citation Format

Share Document