Study on Mechanical Fault Diagnosis Based on IMF Complexity Feature and Support Vector Machine

2012 ◽  
Vol 246-247 ◽  
pp. 37-42
Author(s):  
Wei Dong Liu ◽  
Hu Sheng Wu

According to the non-stationarity characteristics of the vibration signals from reciprocating machinery,a fault diagnosis method based on empirical mode decomposition,Lempel-Ziv complexity and support vector machine(SVM) is proposed.Firstly,the vibration signals were decomposed into a finite number of intrinsic mode functions(IMF), then choosed some IMF components with the criteria of mutual correlation coefficient between IMF components and denoised signal.Thirdly the complexity feature of each IMF component was calculated as faulty eigenvector and served as input of SVM classifier so that the faults of machine are classified.Practical experimental data is used to verify this method,and the diagnosis results and comparative tests fully validate its effectiveness and generalization abilities.

Author(s):  
Chao Zhang ◽  
Zhongxiao Peng ◽  
Shuai Chen ◽  
Zhixiong Li ◽  
Jianguo Wang

During the operation process of a gearbox, the vibration signals can reflect the dynamic states of the gearbox. The feature extraction of the vibration signal will directly influence the accuracy and effectiveness of fault diagnosis. One major challenge associated with the extraction process is the mode mixing, especially under such circumstance of intensive frequency. A novel fault diagnosis method based on frequency-modulated empirical mode decomposition is proposed in this paper. Firstly, several stationary intrinsic mode functions can be obtained after the initial vibration signal is processed using frequency-modulated empirical mode decomposition method. Using the method, the vibration signal feature can be extracted in unworkable region of the empirical mode decomposition. The method has the ability to separate such close frequency components, which overcomes the major drawback of the conventional methods. Numerical simulation results showed the validity of the developed signal processing method. Secondly, energy entropy was calculated to reflect the changes in vibration signals in relation to faults. At last, the energy distribution could serve as eigenvector of support vector machine to recognize the dynamic state and fault type of the gearbox. The analysis results from the gearbox signals demonstrate the effectiveness and veracity of the diagnosis approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jianfeng Zhang ◽  
Mingliang Liu ◽  
Keqi Wang ◽  
Laijun Sun

During the operation process of the high voltage circuit breaker, the changes of vibration signals can reflect the machinery states of the circuit breaker. The extraction of the vibration signal feature will directly influence the accuracy and practicability of fault diagnosis. This paper presents an extraction method based on ensemble empirical mode decomposition (EEMD). Firstly, the original vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs). Secondly, calculating the envelope of each IMF and separating the envelope by equal-time segment and then forming equal-time segment energy entropy to reflect the change of vibration signal are performed. At last, the energy entropies could serve as input vectors of support vector machine (SVM) to identify the working state and fault pattern of the circuit breaker. Practical examples show that this diagnosis approach can identify effectively fault patterns of HV circuit breaker.


2011 ◽  
Vol 211-212 ◽  
pp. 1021-1026 ◽  
Author(s):  
Yong Chen ◽  
Bao Qiang Wang ◽  
Jin Yao

This paper presents a fault diagnosis method of automobile rear axle based on wavelet packet analysis (WPA) and support vector machine (SVM) classifier. By Fourier transformation we find out the frequency band that can mostly reflect the rear axle failure state and use wavelet packet to decompose and reconstruct the vibration signals of rear axle, then extract each band’s energy and the variance, standard deviation, skewness, kurtosis of the specific frequency band to constitute a feature vector. We use the feature vectors which are come from some pieces of normal and abnormal samples to train support vector machine classifier for obtaining the best classification,at the same time, discuss the optimization of SVM parameters. Application shows that the method is effective in real time fault diagnosis for the automobile rear axle and has a strong anti-interference ability in different working conditions.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 470
Author(s):  
Zijian Guo ◽  
Mingliang Liu ◽  
Huabin Qin ◽  
Bing Li

Traditional fault diagnosis methods of DC (direct current) motors require establishing accurate mathematical models, effective state and parameter estimations, and appropriate statistical decision-making methods. However, these preconditions considerably limit traditional motor fault diagnosis methods. To address this issue, a new mechanical fault diagnosis method was proposed. Firstly, the vibration signals of motors were collected by the designed acquisition system. Subsequently, variational mode decomposition (VMD) was adopted to decompose the signal into a series of intrinsic mode functions and extract the characteristics of the vibration signals based on sample entropy. Finally, a united random forest improvement based on a SPRINT algorithm was employed to identify vibration signals of rotating machinery, and each branch tree was trained by applying different bootstrap sample sets. As the results reveal, the proposed fault diagnosis method is featured with good generalization performance, as the recognition rate of samples is more than 90%. Compared with the traditional neural network, data-heavy parameter optimization processes are avoided in this method. Therefore, the VMD-SampEn-RF-based method proposed in this paper performs well in fault diagnosis of DC motors, providing new ideas for future fault diagnoses of rotating machinery.


2015 ◽  
Vol 39 (3) ◽  
pp. 569-580 ◽  
Author(s):  
Ye Tian ◽  
Chen Lu ◽  
Zhipeng Wang ◽  
Zili Wang

This study proposes a fault diagnosis method for hydraulic pumps based on local mean decomposition (LMD), singular value decomposition (SVD), and information-geometric support vector machine (IG-SVM). First, the nonlinear and non-stationary vibration signals are decomposed using LMD into several product functions (PFs). Then, the PFs are processed by SVD to obtain more stable and compact feature vectors. Finally, the health states are identified by an IG-SVM classifier, which is less-dependent on the selected kernel function and parameters than SVM. In addition, the comparisons between LMD, EMD, and WPD demonstrate the superiority of LMD in feature extraction. Compared with SVM and BP neural network, IG-SVM shows higher classification accuracy and computational efficiency in dealing with small-sample fault diagnosis. From the experimental results, it was concluded that the proposed method can effectively realize fault diagnosis for hydraulic pumps under small-sample conditions.


2013 ◽  
Vol 694-697 ◽  
pp. 1151-1154
Author(s):  
Wen Bin Zhang ◽  
Ya Song Pu ◽  
Jia Xing Zhu ◽  
Yan Ping Su

In this paper, a novel fault diagnosis method for gear was approached based on morphological filter, ensemble empirical mode decomposition (EEMD), sample entropy and grey incidence. Firstly, in order to eliminate the influence of noises, the line structure element was selected for morphological filter to denoise the original signal. Secondly, denoised vibration signals were decomposed into a finite number of stationary intrinsic mode functions (IMF) and some containing the most dominant fault information were calculated the sample entropy. Finally, these sample entropies could serve as the feature vectors, the grey incidence of different gear vibration signals was calculated to identify the fault pattern and condition. Practical results show that this method can be used in gear fault diagnosis effectively.


2009 ◽  
Vol 16 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Junsheng Cheng ◽  
Dejie Yu ◽  
Jiashi Tang ◽  
Yu Yang

Targeting the characteristics that periodic impulses usually occur whilst the rotating machinery exhibits local faults and the limitations of singular value decomposition (SVD) techniques, the SVD technique based on empirical mode decomposition (EMD) is applied to the fault feature extraction of the rotating machinery vibration signals. The EMD method is used to decompose the vibration signal into a number of intrinsic mode functions (IMFs) by which the initial feature vector matrices could be formed automatically. By applying the SVD technique to the initial feature vector matrices, the singular values of matrices could be obtained, which could be used as the fault feature vectors of support vector machines (SVMs) classifier. The analysis results from the gear and roller bearing vibration signals show that the fault diagnosis method based on EMD, SVD and SVM can extract fault features effectively and classify working conditions and fault patterns of gears and roller bearings accurately even when the number of samples is small.


Sign in / Sign up

Export Citation Format

Share Document