Numerical Simulation of Flow over Aerators on the Chute with an Anti-Arc Section by Turbulence Flow Model

2012 ◽  
Vol 256-259 ◽  
pp. 2543-2547
Author(s):  
Yi Min Xu ◽  
Yao Wang ◽  
Ji Rui Hou ◽  
Hua Qiang Wu ◽  
Xian Dong Liu ◽  
...  

For a flow chute with complex boundary conditions, such as with an anti-arc section, the flow behaviors and characteristics of aeration after the aerator are more complex than that in the straight chute. Based on the k~ε turbulence flow model together with VOF method, flow velocity fields over the aerator on the chute with anti-arc section were numerical simulated. Model experiments were investigated to verify the simulation results. Comparison shows that the calculation results agree well with the observed experimental data. Some factors including radius of the anti arc, aerator’s height and takeoff angel which influence aerated flow are discussed.

2012 ◽  
Vol 516-517 ◽  
pp. 634-637
Author(s):  
Zhi Xia He ◽  
Li Li Tian ◽  
Ju Yan Liu

In addition to the aerodynamic effects, turbulence and cavitation play an important role on the primary atomization. Different spray breakup models were analysized and evaluated though simulation of spray with them and then a new model of coupling the nozzle cavitating and turbulence flow to the spray primary breakup was put forward. The numerical simulation results with all these different spray primary breakup models were comparied with the experimental data and then the new model were proved to be much better. The study may effectively help establish the accurate spray breakup model.


2000 ◽  
Author(s):  
Fahua Gu ◽  
Abraham Engeda ◽  
Mike Cave ◽  
Jean-Luc Di Liberti

Abstract A numerical simulation is performed on a single stage centrifugal compressor using the commercially available CFD software, CFX-TASCflow. The steady flow is obtained by circumferentially averaging the exit fluxes of the impeller. Three runs are made at design condition and off-design conditions. The predicted performance is in agreement with experimental data. The flow details inside the stationary components are investigated, resulting in a flow model describing the volute/diffuser interaction at design and off-design conditions. The recirculation and twin vortex structure are found to explain the volute loss increase at lower and higher mass flows, respectively.


2014 ◽  
Vol 529 ◽  
pp. 102-107
Author(s):  
Hai Bo Luo ◽  
Ying Yan ◽  
Xiang Ji Meng ◽  
Tao Tao Zhang ◽  
Zu Dian Liang

A 7.8m/s vertical drop simulate of a full composite fuselage section was conducted with energy-absorbing floor to evaluate the crashworthiness features of the fuselage section and to predict its dynamic response to dummies in future. The 1.52m diameter fuselage section consists of a high strength upper fuselage frame, one stiff structural floor and an energy-absorbing subfloor constructed of Rohacell foam blocks. The experimental data from literature [6] were analyzed and correlated with predictions from an impact simulation developed using the nonlinear explicit transient dynamic computer code MSC.Dytran. The simulated average acceleration did not exceed 13g, by contrast with experimental results, whose relative error is less than 11%. The numerical simulation results agree with experiments well.


2016 ◽  
Vol 10 (4) ◽  
pp. 310-315 ◽  
Author(s):  
Sławomir Duda ◽  
Damian Gąsiorek ◽  
Grzegorz Gembalczyk ◽  
Sławomir Kciuk ◽  
Arkadiusz Mężyk

Abstract This paper presents a novel mechatronic device to support a gait reeducation process. The conceptual works were done by the interdisciplinary design team. This collaboration allowed to perform a device that would connect the current findings in the fields of biomechanics and mechatronics. In the first part of the article shown a construction of the device which is based on the structure of an overhead travelling crane. The rest of the article contains the issues related to machine control system. In the prototype, the control of drive system is conducted by means of two RT-DAC4/PCI real time cards connected with a signal conditioning interface. Authors present the developed control algorithms and optimization process of the controller settings values. The summary contains a comparison of some numerical simulation results and experimental data from the sensors mounted on the device. The measurement data were obtained during the gait of a healthy person.


Akustika ◽  
2021 ◽  
pp. 100-106
Author(s):  
sergey Timushev ◽  
Alexey Yakovlev ◽  
Petr Moshkov

The problem of simulation the noise generated during the operation of the propeller is considered. Calculation methods are described and numerical simulation of the noise of a light aircraft propeller by the acoustic-vortex method is performed. The results of numerical modeling of the tonal components of the propeller noise when operating under static conditions are compared with experimental data and calculation results based on a semiempirical model.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3848
Author(s):  
Radosław Kiciński ◽  
Andrzej Kubit

The article presents the characteristics of 1.3964 steel and the results of firing a 7.62 mm projectile with a steel core. A simplified Johnson–Cook material model for steel and projectile was used. Then, a FEM (finite element method) simulation was prepared to calibrate the material constants and boundary conditions necessary to be used in simulations of the entire hull model. It was checked how projectile modeling affects the FEM calculation results. After obtaining the simulation results consistent with the experimental results, using the model of a modern minehunter, the resistance of the ship’s hull to penetration by a small-caliber projectile was tested.


2009 ◽  
Vol 21 (5) ◽  
pp. 633-639 ◽  
Author(s):  
Ming-hui Yu ◽  
Yin-ling Deng ◽  
Lian-chao Qin ◽  
Dang-wei Wang ◽  
Ya-ling Chen

2012 ◽  
Vol 608-609 ◽  
pp. 1375-1382
Author(s):  
Rui Zhang ◽  
Qin Hui Wang ◽  
Zhong Yang Luo ◽  
Meng Xiang Fang

As the first step in coal combustion and gasification, coal devolatilization has significant effect on reaction process. Previous coal devolatilization models have some disadvantages, such as poor flexibility, model complexity, and requirement of characterization parameters. Recently, Sommariva et al. have proposed a multi-step kinetic model of coal devolatilization. This model avoids the disadvantages mentioned above and can predict elemental composition of tar and char. In this paper, the mechanism of this model has been revised for simple application to Chemkin. Revision method is that some reactions are split into more reactions by using one pseudo-intermediate-product to replace several final products. Simulation results show that calculation results from revised mechanism compare quite well with that from original mechanism and have good agreement with experimental data. The revised mechanism is accurate and can be applied to Chemkin very easily, which gives it wide application to simulation of coal pyrolysis, gasification and combustion.


Author(s):  
Rolf Emunds ◽  
Ian K. Jennions ◽  
Dieter Bohn ◽  
Jochen Gier

This paper deals with the numerical simulation of flow through a 1.5 stage axial flow turbine. The 3-row configuration has been experimentally investigated at the University of Aachen where measurements behind the first vane, the first stage and the full configuration were taken. These measurements allow single blade row computations, to the measured boundary conditions taken from complete engine experiments, or full multistage simulations. The results are openly available inside the framework of ERCOFTAC 1996. There are two separate but interrelated parts to the paper. Firstly, two significantly different Navier-Stokes codes are used to predict the flow around the first vane and the first rotor, both running in isolation. This is used to engender confidence in the code that is subsequently used to model the multiple bladerow tests, the other code is currently only suitable for a single blade row. Secondly, the 1.5 stage results are compared to the experimental data and promote discussion of surrounding blade row effects on multistage solutions.


Sign in / Sign up

Export Citation Format

Share Document