Preparation and Characterization of Nanosized Barium-Strontium Titanate Immobilized on Aluminum Oxide and Its Application in Adsorption

2010 ◽  
Vol 26-28 ◽  
pp. 682-685 ◽  
Author(s):  
Dong Zhang ◽  
Chun Li Zhang

Nanometer barium-stroutium titanate immobilized on aluminum oxide (ABST) was prepared by the citric acid sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR). Its Pb2+ and Cd2+ adsorption properties from water were studied. Adsorption and elution were investigated under different conditions. The results showed that the nanometer barium-strontium titanate was immobilized on aluminum oxide firmly, becoming a composite adsorbent. The lead and cadmium ions were quantitatively retained at pH 5-8; their adsorption capacities of ABST were 70.28 mg•g-1 and 8.12 mg•g-1, respectively. The adsorbent of adsorped lead and cadmium ions were regenerated completely by elution with 1 mol•L-1 HNO3. The adsorbent had a promising prospect in analyticl chemistry and water treatment.

2010 ◽  
Vol 152-153 ◽  
pp. 1013-1016
Author(s):  
Hong Wang ◽  
Jing Yang

Nanometer barium-strontium titanate based coated aluminum oxide (ABST) was prepared by the sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR). Its application in speciation of Cr(III) and Cr(VI) from water were studied. The results showed that the nanometer barium-strontium titanate was immobilized on aluminum oxide firmly, becoming a new adsorbent. Two forms of chromium showed different exchange capacities at different pH values, viz. Cr (III) selectively retained at pH 10–13, whereas Cr (VI) retained at pH 1. Hence complete separation of the two forms of chromium is possible. Retained species were eluted with 5mL of 1 mol•L−1 HCl and 1 mol•L−1 NaOH. The Cr(III) and Cr(VI) concentration was measured by atomic absorption spectroscopy. The adsorbent had a promising prospect in the separation of Cr(III) and Cr(VI) in environment water.


2020 ◽  
Vol 7 (2) ◽  
pp. 1-11
Author(s):  
Hamed A. Gatea ◽  
Iqbal Nahi

"Barium strontium Titanate (BST) is a solid solution consist of BaTiO3 and SrTiO3 that mixed with suitable ratio. Barium strontium Titanate oxide (Ba0.8Sr0.2TiO3) thin films prepared by sol gel technique. Barium strontium Titanate thin films deposited on Si substrate and annealed at [400,500, 600 and 700] ºC. The characterization of BST films investigated by a different technique, the X-Ray Diffraction (XRD) and Scanning Electron Macroscopy (SEM) revealed the phases, crystal structure and surface topography of the films. XRD pattern shows tetragonal phase for Ba0.8Sr0.2TiO3 perovskite structure with many peaks for different plans. The films annealed at the different temperature that indicated intermediate phases on perovskite structure of Ba0.8Sr0.2TiO3.


2010 ◽  
Vol 44-47 ◽  
pp. 2136-2139
Author(s):  
Dong Zhang

Nano-calcium titanate-based coated aluminum oxide (ACCTO) was successfully prepared by the citrate acid sol-gel method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Its application in speciation of Cr(III) and Cr(VI) from water was studied. The conditions of adsorption and elution were investigated. The results show that nanometer calcium titanate could be immobilized on the aluminum oxide firmly, becoming a composite adsorbent. Two forms of chromium showed different adsorption capability at different pH values, Cr (III) selectively retained at pH 8-14, whereas Cr (VI) retained at pH≤2. So separation of the Cr(III) and Cr(VI) is possible. Retained species were eluted with 5mL of 1 mol•L-1 HCl and NaOH. The Cr(III) and Cr(VI) concentration was measured by atomic absorption spectroscopy. The adsorption agent has a promising prospect in removal or enriching and separation of Cr(III) and Cr(VI) in water.


Cerâmica ◽  
2012 ◽  
Vol 58 (345) ◽  
pp. 99-104 ◽  
Author(s):  
M. Banerjee ◽  
S. Mukherjee ◽  
S. Maitra

Barium strontium titanate (BST) ceramics (Ba0.6Sr0.4)TiO3 were synthesized by solid state sintering using barium carbonate, strontium carbonate and rutile as the precursor materials. The samples were doped with nickel oxide in different proportions. Different phases present in the sintered samples were determined from X-ray diffraction investigation and the distribution of different phases in the microstructure was assessed from scanning electron microscopy study. It was observed that the dielectric properties of BST were modified significantly with nickel oxide doping. These ceramics held promise for applications in tuned circuits.


2014 ◽  
Vol 487 ◽  
pp. 106-109
Author(s):  
Nurhafizah Ramli ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy ◽  
They Yee Chin ◽  
K. Anwar ◽  
...  

Nowdays Barium strontium titanate (BST) can be applied into many fields of engineering. Its properties attracted more researchers to research and apply it into many fields of study. In this work, sol-gel method of preparing barium strontium titanate (BST) has been used. This work was done with 4 different ratio of x with 4 different deposition layers. The main purpose of this work is to investigate the relation between the ratio of barium (Ba) with different deposition layer and the surface of the substrate. Atomic force microscopy (AFM) was used in whole work to investigate the crystalline structure and surface roughness of the BST thin films.


2010 ◽  
Vol 152-153 ◽  
pp. 670-673 ◽  
Author(s):  
Dong Zhang

Nanometer calcium titanate immobilized on Aluminum oxide (ACTO) was successfully prepared by the citrate acid sol-gel method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The adsorption capability of ACTO for Pb2+, Cd2+and Zn2+ from water was studied. Adsorption and elution were investigated under different conditions. The results show that nanometer calcium titanate could be immobilized on the aluminum oxide firmly, becoming a composite adsorbent. The Pb2+, Cd2+and Zn2+ were retained at pH 5-9, their adsorption capacities of ACTO were 124 mg•g-1, 8.58 mg•g-1 and 13.86 mg•g-1, respectively. The adsorption agent can be regenerated by elution with 2 mol•L-1 HNO3. The adsorbent has a promising prospect in removal or enriching and separation of heavy metals in water.


Sign in / Sign up

Export Citation Format

Share Document