Preparation and Characterization of Nanometer Calcium Titanate Immobilized on Aluminum Oxide and its Adsorption Capacity for Heavy Metal Ions in Water

2010 ◽  
Vol 152-153 ◽  
pp. 670-673 ◽  
Author(s):  
Dong Zhang

Nanometer calcium titanate immobilized on Aluminum oxide (ACTO) was successfully prepared by the citrate acid sol-gel method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The adsorption capability of ACTO for Pb2+, Cd2+and Zn2+ from water was studied. Adsorption and elution were investigated under different conditions. The results show that nanometer calcium titanate could be immobilized on the aluminum oxide firmly, becoming a composite adsorbent. The Pb2+, Cd2+and Zn2+ were retained at pH 5-9, their adsorption capacities of ACTO were 124 mg•g-1, 8.58 mg•g-1 and 13.86 mg•g-1, respectively. The adsorption agent can be regenerated by elution with 2 mol•L-1 HNO3. The adsorbent has a promising prospect in removal or enriching and separation of heavy metals in water.

2010 ◽  
Vol 44-47 ◽  
pp. 2136-2139
Author(s):  
Dong Zhang

Nano-calcium titanate-based coated aluminum oxide (ACCTO) was successfully prepared by the citrate acid sol-gel method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Its application in speciation of Cr(III) and Cr(VI) from water was studied. The conditions of adsorption and elution were investigated. The results show that nanometer calcium titanate could be immobilized on the aluminum oxide firmly, becoming a composite adsorbent. Two forms of chromium showed different adsorption capability at different pH values, Cr (III) selectively retained at pH 8-14, whereas Cr (VI) retained at pH≤2. So separation of the Cr(III) and Cr(VI) is possible. Retained species were eluted with 5mL of 1 mol•L-1 HCl and NaOH. The Cr(III) and Cr(VI) concentration was measured by atomic absorption spectroscopy. The adsorption agent has a promising prospect in removal or enriching and separation of Cr(III) and Cr(VI) in water.


2010 ◽  
Vol 26-28 ◽  
pp. 835-838 ◽  
Author(s):  
Dong Zhang ◽  
Zhi Jiang Liu

Nano-calcium titanate-based coated silica gel G (GCTO) was prepared by the citric acid sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR). Its lead, cadmium and nickel ions adsorption properties from water were studied. Adsorption and elution were investigated under different conditions. The results showed that the nanometer calcium titanate was immobilized on the silica gel G firmly, becoming a new composite adsorbent. The lead, cadmium and nickel ions were quantitatively retained at pH 5-9; their adsorption capacities of GCTO were 114 mg•g-1, 11.2 mg•g-1 and 20.1 mg•g-1, respectively. The adsorbent can be regenerated completely by elution with 1 mol•L-1 HNO3. The adsorbent has a promising prospect in removal or enriching and separation of heavy metals in water.


2010 ◽  
Vol 129-131 ◽  
pp. 724-727
Author(s):  
Dong Zhang

Nanometer calcium titanate immobilized on silica gel G (SGCTO) was prepared by the sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR). Its application in speciation of Cr(III) and Cr(VI) from water was studied. Adsorption and elution were investigated under different conditions. The results showed that the nanometer calcium titanate was immobilized on the silica gel G firmly, becoming a new adsorbent. At normal temperature, two forms of chromium show different adsorption capacities at different pH values, that is, Cr (III) selectively retained at pH 8–14, but Cr(Ⅵ) can’t be adsorbed. Whereas Cr (VI) retained at pH 1, but Cr(Ⅲ) can’t be adsorbed. Hence complete separation of the two forms of chromium is possible. Retained Cr(III) and Cr(VI) were eluted with 1 mol•L−1 HCl and 2 mol•L−1NaOH, respectively. The Cr(III) and Cr(VI) concentration was measured by atomic absorption spectroscopy. The method was successfully applied for the speciation of chromium in environmental water samples.


2010 ◽  
Vol 152-153 ◽  
pp. 1013-1016
Author(s):  
Hong Wang ◽  
Jing Yang

Nanometer barium-strontium titanate based coated aluminum oxide (ABST) was prepared by the sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR). Its application in speciation of Cr(III) and Cr(VI) from water were studied. The results showed that the nanometer barium-strontium titanate was immobilized on aluminum oxide firmly, becoming a new adsorbent. Two forms of chromium showed different exchange capacities at different pH values, viz. Cr (III) selectively retained at pH 10–13, whereas Cr (VI) retained at pH 1. Hence complete separation of the two forms of chromium is possible. Retained species were eluted with 5mL of 1 mol•L−1 HCl and 1 mol•L−1 NaOH. The Cr(III) and Cr(VI) concentration was measured by atomic absorption spectroscopy. The adsorbent had a promising prospect in the separation of Cr(III) and Cr(VI) in environment water.


2010 ◽  
Vol 26-28 ◽  
pp. 682-685 ◽  
Author(s):  
Dong Zhang ◽  
Chun Li Zhang

Nanometer barium-stroutium titanate immobilized on aluminum oxide (ABST) was prepared by the citric acid sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR). Its Pb2+ and Cd2+ adsorption properties from water were studied. Adsorption and elution were investigated under different conditions. The results showed that the nanometer barium-strontium titanate was immobilized on aluminum oxide firmly, becoming a composite adsorbent. The lead and cadmium ions were quantitatively retained at pH 5-8; their adsorption capacities of ABST were 70.28 mg•g-1 and 8.12 mg•g-1, respectively. The adsorbent of adsorped lead and cadmium ions were regenerated completely by elution with 1 mol•L-1 HNO3. The adsorbent had a promising prospect in analyticl chemistry and water treatment.


2020 ◽  
Vol 43 (1) ◽  
pp. 26-42 ◽  
Author(s):  
Zahra Hajian Karahroudi ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

AbstractThis study presents a preparation of SrFe12O19– SrTiO3 nanocomposite synthesis via the green auto-combustion method. At first, SrFe12O19 nanoparticles were synthesized as a core and then, SrTiO3 nanoparticles were prepared as a shell for it to manufacture SrFe12O19–SrTiO3 nanocomposite. A novel sol-gel auto-combustion green synthesis method has been used with lemon juice as a capping agent. The prepared SrFe12O19–SrTiO3 nanocomposites were characterized by using several techniques to characterize their structural, morphological and magnetic properties. The crystal structures of the nanocomposite were investigated via X-ray diffraction (XRD). The morphology of SrFe12O19– SrTiO3 nanocomposite was studied by using a scanning electron microscope (SEM). The elemental composition of the materials was analyzed by an energy-dispersive X-ray (EDX). Magnetic properties and hysteresis loop of nanopowder were characterized via vibrating sample magnetometer (VSM) in the room temperature. Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed the molecular bands of nanoparticles. Also, the photocatalytic behavior of nanocomposites has been checked by the degradation of azo dyes under irradiation of ultraviolet light.


2017 ◽  
Vol 31 (02) ◽  
pp. 1750006 ◽  
Author(s):  
Mohammad Hossein Ghorbani ◽  
Abdol Mahmood Davarpanah

Manganese oxides are of more interest to researchers because of their ability as catalysts and lithium batteries. In this research, MnO2nanowires with diameter about 45 nm were synthesized by sol–gel method at room temperature (RT). Effect of increasing the annealing temperature from 400[Formula: see text]C to 600[Formula: see text]C on crystalline structure of nanostructure were studied and average crystallite size was estimated about 22 nm. X-ray Diffraction (XRD) method, Energy-Dispersive X-ray Diffraction (EDXD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) were used to characterize the nanowires of MnO2.


2021 ◽  
Vol 12 (4) ◽  
pp. 2523-2529
Author(s):  
Daniel Sam N ◽  
Anish C I ◽  
Sabeena G ◽  
Rajaduraipandian S ◽  
Manobala ◽  
...  

Sol gel methods were used for the study of the antimicrobial activity of Cd-TiO2 against gram-negative and positive bacteria. These Cd-TiO2 have been characterized by various optical and techniques. They have been exhibited by X-ray diffraction, scanning electron microscopy, ultraviolet spectroscopy, and infrared spectroscopy. The structures of the various XRD patterns indicate that the product has a structure. The particle size of Cd-TiO2 is 35nm. The SEM images confirm the spherical appearance of the sample. The energy X-ray spectra have been confirmed as well and then C, O, Ti, Cd, Pt element are present in Cd-TiO2. The weight percentage of Cadmium is 5.8%, Ti is 51.03%, C is 5.13% and O is 31.75% in Cd-TiO2. BET image shows that the major pore size distribution of Cd-TiO2 is ranged from 2.24 nm. The Cd-TiO2 that the antibacterial activity when tested against the pathogens only gram-negative bacteria such as Pseudomonas. The zone of minimum inhibition concentration was measured in a range of 20mm in 25μl and 30mm in 100μl.


DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 278-287
Author(s):  
Javier Alberto Olarte Torres ◽  
María Cristina Cifuentes Arcila ◽  
Harvey Andrés Suárez Moreno

This paper presents the results obtained from the synthesis and morphological characterization of different magnetite samples:  La0.67-x Prx Ca0.33 MnO3.LaMn1-x Cox O3 and LaMn1-x Nix O3 at 0.13 ≤ 𝑥𝑥 ≤ 0.67 produced by a solid-state reaction mechanism and 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀1−𝑥𝑥(𝐶𝐶𝐶𝐶/𝑁𝑁𝑁𝑁)𝑥𝑥𝑂𝑂3 at 0.0 ≤ 𝑥𝑥 ≤ 0.5 produced by the sol-gel method. These samples were characterized using X-ray diffraction spectroscopy and by measuring electric resistivity and magnetic susceptibility which were carried out as a function of temperature. Notably, the effects of strain and compressive strength on the lattices of magnetite samples were highly dependent on the concentration of 𝑃𝑃𝑟𝑟, 𝐶𝐶𝐶𝐶, and 𝑁𝑁𝑁𝑁. Moreover, the transition temperatures of metal-insulator and ferromagnetic-paramagnetic phases also largely depend on these strength effects, e.g., at higher concentrations of 𝑃𝑃𝑟𝑟, effects of increased strain strength were observed, relocating the shifts of ferromagnetic-paramagnetic transitions to lower temperatures. On the other hand, effects of increased compressive strength were observed at higher concentrations of 𝑁𝑁𝑁𝑁 and 𝐶𝐶𝐶𝐶, relocating the shifts of ferromagnetic-paramagnetic and metal-insulator transitions to higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document