Hybrid Genetic Clustering by Using FCM and Geodesic Distance for Complex Distributed Data

2012 ◽  
Vol 263-266 ◽  
pp. 2597-2601 ◽  
Author(s):  
Yong Sheng Yang ◽  
Gang Li ◽  
Yong Sheng Zhu ◽  
You Yun Zhang

To efficiently find hidden clusters in datasets with complex distributed data,inspired by complementary strategies, a hybrid genetic clustering algorithm was developed, which is on the basis of the geodesic distance metric, and combined with the Fuzzy C-Means clustering (FCM) algorithm. First, instead of using Euclidean distance,the new approach employs geodesic distance based dissimilarity metric during all fitness evaluation. And then, with the help of FCM clustering, some sub-clusters with spherical distribution are partitioned effectively. Next, a genetic algorithm based clustering using geodesic distance metric, named GCGD, is adopted to cluster the clustering centers obtained from FCM clustering. Finally, the final results are acquired based on above two clustering results. Experimental results on eight benchmark datasets clustering questions show the effectiveness of the algorithm as a clustering technique. Compared with conventional GCGD, the hybrid clustering can decrease the computational time obviously, while retaining high clustering correct ratio.

2013 ◽  
Vol 765-767 ◽  
pp. 670-673
Author(s):  
Li Bo Hou

Fuzzy C-means (FCM) clustering algorithm is one of the widely applied algorithms in non-supervision of pattern recognition. However, FCM algorithm in the iterative process requires a lot of calculations, especially when feature vectors has high-dimensional, Use clustering algorithm to sub-heap, not only inefficient, but also may lead to "the curse of dimensionality." For the problem, This paper analyzes the fuzzy C-means clustering algorithm in high dimensional feature of the process, the problem of cluster center is an np-hard problem, In order to improve the effectiveness and Real-time of fuzzy C-means clustering algorithm in high dimensional feature analysis, Combination of landmark isometric (L-ISOMAP) algorithm, Proposed improved algorithm FCM-LI. Preliminary analysis of the samples, Use clustering results and the correlation of sample data, using landmark isometric (L-ISOMAP) algorithm to reduce the dimension, further analysis on the basis, obtained the final results. Finally, experimental results show that the effectiveness and Real-time of FCM-LI algorithm in high dimensional feature analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Huaixiao Wang ◽  
Wanhong Zhu ◽  
Jianyong Liu ◽  
Ling Li ◽  
Zhuchen Yin

To determine the multidistribution center location and the distribution scope of the distribution center with high efficiency, the real-parameter quantum-inspired evolutionary clustering algorithm (RQECA) is proposed. RQECA is applied to choose multidistribution center location on the basis of the conventional fuzzy C-means clustering algorithm (FCM). The combination of the real-parameter quantum-inspired evolutionary algorithm (RQIEA) and FCM can overcome the local search defect of FCM and make the optimization result independent of the choice of initial values. The comparison of FCM, clustering based on simulated annealing genetic algorithm (CSAGA), and RQECA indicates that RQECA has the same good convergence as CSAGA, but the search efficiency of RQECA is better than that of CSAGA. Therefore, RQECA is more efficient to solve the multidistribution center location problem.


2011 ◽  
Vol 181-182 ◽  
pp. 545-550
Author(s):  
Hong Fei Li ◽  
Fu Ling Wang ◽  
Shi Jue Zheng ◽  
Li Gao

The fuzzy clustering algorithm is sensitive to the m value and the degree of membership. Because of the deficiencies of traditional FCM clustering algorithm, we made specific improvement. Through the calculation of the value of m, the amendments of degree of membership to the discussion of issues, effectively compensate for the deficiencies of the traditional algorithm and achieve a relatively good clustering effect. Finally, through the analysis of temperature observation data of the three northeastern province of china in 2000, the reasonableness of the method is verified.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2085
Author(s):  
Ranjita Rout ◽  
Priyadarsan Parida ◽  
Youseef Alotaibi ◽  
Saleh Alghamdi ◽  
Osamah Ibrahim Khalaf

Early identification of melanocytic skin lesions increases the survival rate for skin cancer patients. Automated melanocytic skin lesion extraction from dermoscopic images using the computer vision approach is a challenging task as the lesions present in the image can be of different colors, there may be a variation of contrast near the lesion boundaries, lesions may have different sizes and shapes, etc. Therefore, lesion extraction from dermoscopic images is a fundamental step for automated melanoma identification. In this article, a watershed transform based on the fast fuzzy c-means (FCM) clustering algorithm is proposed for the extraction of melanocytic skin lesion from dermoscopic images. Initially, the proposed method removes the artifacts from the dermoscopic images and enhances the texture regions. Further, it is filtered using a Gaussian filter and a local variance filter to enhance the lesion boundary regions. Later, the watershed transform based on MMLVR (multiscale morphological local variance reconstruction) is introduced to acquire the superpixels of the image with accurate boundary regions. Finally, the fast FCM clustering technique is implemented in the superpixels of the image to attain the final lesion extraction result. The proposed method is tested in the three publicly available skin lesion image datasets, i.e., ISIC 2016, ISIC 2017 and ISIC 2018. Experimental evaluation shows that the proposed method achieves a good result.


Author(s):  
SHANG-MING ZHOU ◽  
JOHN Q. GAN

In this paper, a novel procedure for normalising Mercer kernel is suggested firstly. Then, the normalised Mercer kernel techniques are applied to the fuzzy c-means (FCM) algorithm, which leads to a normalised kernel based FCM (NKFCM) clustering algorithm. In the NKFCM algorithm, implicit assumptions about the shapes of clusters in the FCM algorithm is removed so that the new algorithm possesses strong adaptability to cluster structures within data samples. Moreover, a new method for calculating the prototypes of clusters in input space is also proposed, which is essential for data clustering applications. Experimental results on several benchmark datasets have demonstrated the promising performance of the NKFCM algorithm in different scenarios.


Author(s):  
WEIXIN XIE ◽  
JIANZHUANG LIU

This paper presents a fast fuzzy c-means (FCM) clustering algorithm with two layers, which is a mergence of hard clustering and fuzzy clustering. The result of hard clustering is used to initialize the c cluster centers in fuzzy clustering, and then the number of iteration steps is reduced. The application of the proposed algorithm to image segmentation based on the two dimensional histogram is provided to show its computational efficience.


Author(s):  
Parvathavarthini S. ◽  
Karthikeyani Visalakshi N. ◽  
Shanthi S. ◽  
Lakshmi K.

Data clustering is an unsupervised technique that segregates data into multiple groups based on the features of the dataset. Soft clustering techniques allow an object to belong to various clusters with different membership values. However, there are some impediments in deciding whether or not an object belongs to a cluster. To solve these issues, an intuitionistic fuzzy set introduces a new parameter called hesitancy factor that contributes to the lack of domain knowledge. Unfortunately, selecting the initial centroids in a random manner by any clustering algorithm delays the convergence and restrains from getting a global solution to the problem. To come across these barriers, this work presents a novel clustering algorithm that utilizes crow search optimization to select the optimal initial seeds for the Intuitionistic fuzzy clustering algorithm. Experimental analysis is carried out on several benchmark datasets and artificial datasets. The results demonstrate that the proposed method provides optimal results in terms of objective function and error rate.


Author(s):  
Guang Hu ◽  
Zhenbin Du

In order to resolve the disadvantages of fuzzy C-means (FCM) clustering algorithm for image segmentation, an improved Kernel-based fuzzy C-means (KFCM) clustering algorithm is proposed. First, the reason why the kernel function is introduced is researched on the basis of the classical KFCM clustering. Then, using spatial neighborhood constraint property of image pixels, an adaptive weighted coefficient is introduced into KFCM to control the influence of the neighborhood pixels to the central pixel automatically. At last, a judging rule for partition fuzzy clustering numbers is proposed that can decide the best clustering partition numbers and provide an optimization foundation for clustering algorithm. An adaptive kernel-based fuzzy C-means clustering with spatial constraints (AKFCMS) model for image segmentation approach is proposed in order to improve the efficiency of image segmentation. Various experiment results show that the proposed approach can get the spatial information features of an image accurately and is robust to realize image segmentation.


2013 ◽  
Vol 392 ◽  
pp. 803-807 ◽  
Author(s):  
Xue Bo Feng ◽  
Fang Yao ◽  
Zhi Gang Li ◽  
Xiao Jing Yang

According to the number of cluster centers, initial cluster centers, fuzzy factor, iterations and threshold, Fuzzy C-means clustering algorithm (FCM) clusters the data set. FCM will encounter the initialization problem of clustering prototype. Firstly, the article combines the maximum and minimum distance algorithm and K-means algorithm to determine the number of clusters and the initial cluster centers. Secondly, the article determines the optimal number of clusters with Silhouette indicators. Finally, the article improves the convergence rate of FCM by revising membership constantly. The improved FCM has good clustering effect, enhances the optimized capability, and improves the efficiency and effectiveness of the clustering. It has better tightness in the class, scatter among classes and cluster stability and faster convergence rate than the traditional FCM clustering method.


2011 ◽  
Vol 411 ◽  
pp. 572-575 ◽  
Author(s):  
Gang Li ◽  
Hong Xi Wang ◽  
Jian Zhuang

Aim at the problem that there is an irregular data distribution when using multi-sensor to monitor machine conditions, a genetic clustering algorithm using geodesic distance metric (GCGD) is adopted to perform machine fault detection. In GCGD, a geodesic distance based proximity measure is employed replacing Euclidean distance that cannot correctly describe the relationship between data lying in a manifold, and GCGD determines partitioning of the feature vectors from a combinatorial optimization viewpoint. Fault detection experiments of inlet valve leakage in a two-stage reciprocating compressor reveal that GCGD achieves a better performance of fault detection than the K-means algorithm and a genetic algorithm based clustering technique.


Sign in / Sign up

Export Citation Format

Share Document