scholarly journals Analysis of Fiberglass Winding Angle on Natural Frequency of Free Vibration of Cylindrical Shell with Asymmetric Boundary Conditions

2013 ◽  
Vol 274 ◽  
pp. 65-69 ◽  
Author(s):  
Zhi Wei Wang ◽  
Bo Wu ◽  
Yan Fu Wang ◽  
S.M. Bosiakov

In order to obtain approximate solution of natural frequencies for the free vibration of anisotropic circular cylindrical shells made of GFRP (glass fiber-reinforced plastic) with asymmetric boundary conditions, Love’s theory and energy method are used. Computation results show that the fundamental natural frequency comes from different vibration modes while the winding angle varies, the effect of number of axial half waves is stronger than number of circumferential waves on natural frequency of free vibration of anisotropic circular cylindrical shell. The effect of shell’s geometrical parameters is also investigated on natural frequencies.

2013 ◽  
Vol 765-767 ◽  
pp. 106-109
Author(s):  
Zhi Wei Wang ◽  
Yan Fu Wang ◽  
Bai Qin

In order to obtain approximate solution of natural frequencies for the free vibration of anisotropic circular cylindrical shells made of GFRP (glass fiber-reinforced plastic) with symmetric boundary conditions, Loves theory and energy method are used. Computation results show that the fundamental natural frequency comes from different vibration modes while the winding angle varies, the effect of number of axial half waves is stronger than number of circumferential waves on natural frequency of free vibration of anisotropic circular cylindrical shell.


2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


Author(s):  
Saeed Sarkheil ◽  
Mahmud S Foumani ◽  
Hossein M Navazi

Based on the Sanders thin shell theory, this paper presents an exact solution for the vibration of circular cylindrical shell made of two different materials. The shell is sub-divided into two segments and the state-space technique is employed to derive the homogenous differential equations. Then continuity conditions are applied where the material of the cylindrical shell changes. Shells with various combinations of end boundary conditions are analyzed by the proposed method. Finally, solving different examples, the effect of geometric parameters as well as BCs on the vibration of the bi-material shell is studied.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xue-Qin Li ◽  
Wei Zhang ◽  
Xiao-Dong Yang ◽  
Lu-Kai Song

A unified approach of free vibration analysis for stiffened cylindrical shell with general boundary conditions is presented in this paper. The vibration of stiffened cylindrical shell is modeled mathematically involving the first-order shear deformation shell theory. The improved Fourier series is selected as the admissible displacement function while the arbitrary boundary conditions are simulated by adjusting the equivalent spring stiffness. The natural frequencies and modal shapes of the stiffened shell are obtained by solving the dynamic model with the Rayleigh-Ritz procedure. Various numerical results of free vibration analysis for stiffened cylindrical shell are obtained, including natural frequencies and modes under simply supported, free, and clamped boundary conditions. Moreover, the effects of stiffener on natural frequencies are discussed. Compared with several state-of-the-art methods, the feasibility and validity of the proposed method are verified.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771181 ◽  
Author(s):  
Jianyu Fan ◽  
Jin Huang ◽  
Junbo Ding ◽  
Jie Zhang

This article presents the free vibration of piezoelectric functionally graded carbon nanotube-reinforced composite conical panels with elastically restrained boundary conditions. The material properties of carbon nanotube-reinforced composites are assumed to be temperature-dependent and are obtained using the extended rule of mixture. First-order shear deformation theory is adopted to obtain the kinematics of the hybrid panels, and the boundary spring technique is used to implement arbitrary boundary conditions. Meanwhile, two types of electrical boundary conditions, closed circuit and open circuit, are considered for the free surfaces of the piezoelectric layers. The complete sets of electro-mechanically coupled governing equations are obtained using the Rayleigh–Ritz procedure with the Chebyshev polynomial basis functions. The resultant eigenvalue problem is solved to obtain natural frequencies and mode shapes of the hybrid panels. Convergence and comparison studies have been conducted to verify the stability and accuracy of the proposed method. Several numerical examples are examined to reveal the influences of the carbon nanotube volume fractions, carbon nanotube distribution types, boundary conditions, geometrical parameters, and temperatures on the natural frequencies of the hybrid panel. Moreover, the mode shapes of the hybrid panels under various boundary conditions are also presented.


Author(s):  
Amin Ghorbani Shenas ◽  
Parviz Malekzadeh ◽  
Sima Ziaee

This work presents an investigation on the free vibration behavior of rotating pre-twisted functionally graded graphene platelets reinforced composite (FG-GPLRC) laminated blades/beams with an attached point mass. The considered beams are constituted of [Formula: see text] layers which are bonded perfectly and made of a mixture of isotropic polymer matrix and graphene platelets (GPLs). The weight fraction of GPLs changes in a layer-wise manner. The effective material properties of FG-GPLRC layers are computed by using the modified Halpin-Tsai model together with rule of mixture. The free vibration eigenvalue equations are developed based on the Reddy’s third-order shear deformation theory (TSDT) using the Chebyshev–Ritz method under different boundary conditions. After validating the approach, the influences of the GPLs distribution pattern, GPLs weight fraction, angular velocity, the variation of the angle of twist along the beam axis, the ratio of attached mass to the beam mass, boundary conditions, position of attached mass, and geometry on the vibration behavior are investigated. The findings demonstrate that the natural frequencies of the rotating pre-twisted FG-GPLRC laminated beams significantly increases by adding a very small amount of GPLs into polymer matrix. It is shown that placing more GPLs near the top and bottom surfaces of the pre-twisted beam is an effective way to strengthen the pre-twisted beam stiffness and increase the natural frequencies.


2020 ◽  
Vol 27 (1) ◽  
pp. 216-225
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

AbstractRecently, basalt fiber reinforced polymer (BFRP) is acknowledged as an outstanding material for the strengthening of existing concrete structure, especially it was being used in marine vehicles, aerospace, automotive and nuclear engineering. Most of the structures were subjected to severe dynamic loading during their service life that may induce vibration of the structures. However, free vibration studied on the basalt laminates composite plates with elliptical cut-out and correlation of natural frequency with buckling load has been very limited. Therefore, effects of the elliptical hole on the natural frequency of basalt/epoxy composite plates was performed in this study. Effects of stacking sequence (θ), elliptical hole inclination (ϕ), hole geometric ratio (a/b) and position of the elliptical hole were considered. The numerical modeling of free vibration analysis was based on the mechanical properties of BFRP obtained from the experiment. The natural frequencies as well as mode shapes of basalt laminates composite plates were numerically determined using the commercial program software (ABAQUS). Then, the determination of correlation of natural frequencies with buckling load was carried out. Results showed that elliptical hole inclination and fiber orientation angle induced the inverse proportion between natural frequency and buckling load.


2011 ◽  
Vol 675-677 ◽  
pp. 477-480
Author(s):  
Dong Wei Shu

In this work analytical solutions are developed to study the free vibration of composite beams under axial loading. The beam with a single delamination is modeled as four interconnected Euler-Bernoulli beams using the delamination as their boundary. The continuity and the equilibrium conditions are satisfied between the adjoining beams. The studies show that the sizes and the locations of the delaminations significantly influence the natural frequencies and mode shapes of the beam. A monotonic relation between the natural frequency and the axial load is predicted.


Sign in / Sign up

Export Citation Format

Share Document