Lattice Boltzmann Simulation of Effect of Rolling Manipulation of Traditional Chinese Massage on Blood Flow

2013 ◽  
Vol 275-277 ◽  
pp. 472-477
Author(s):  
Hui Li Tan ◽  
Fan Rong Kong ◽  
Ke Zhao Bai ◽  
Ling Jiang Kong

A 2D Lattice Boltzmann model for a blood vesssel under rolling manipulation(RM) was presented. The influence of rolling frequency and stenosis coefficient on blood flux, wall shear stress and flow velocity was given by the numerical simulation based on lattice Boltzmann method . It is found that increasing RM frequency can not always increase the flux. There is a proper RM frequency for maximum flux.When the maximum stenosis coefficient increases,the change range of flux and wall shear stress will increase. The rolling massage can also change flow velocity in different sections of blood vessel.

2020 ◽  
Vol 199 ◽  
pp. 104422
Author(s):  
Li Min ◽  
Huang Jingcong ◽  
Zhang Yang ◽  
Wang Yuan ◽  
Wu Changsong ◽  
...  

Author(s):  
Minglei Shan ◽  
Yu Yang ◽  
Hao Peng ◽  
Qingbang Han ◽  
Changping Zhu

Understanding the dynamic characteristic of the cavitation bubble near a solid wall is a fundamental issue for the bubble collapse application and prevention. In the present work, an improved three-dimensional multi-relaxation-time pseudopotential lattice Boltzmann model is adopted to investigate the cavitation bubble collapse near the solid wall. With respect to thermodynamic consistency, Laplace law verification, the three-dimensional pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. By the theoretical analysis, it is proved that the model can be regarded as a solver of the Rayleigh–Plesset equation, and confirmed by comparing the results of the lattice Boltzmann simulation and the Rayleigh–Plesset equation calculation for the case of cavitation bubble collapse in the infinite medium field. The bubble collapse near the solid wall is modeled using the improved pseudopotential multi-relaxation-time lattice Boltzmann model. We find the lattice Boltzmann simulation and the experimental results have the same dynamic process by comparing the bubble profiles evolution. Form the pressure field and the velocity field evolution it is found that the tapered higher pressure region formed near the top of the bubble is a crucial driving force inducing the bubble collapse. This exploratory research demonstrates that the lattice Boltzmann method is an alternative tool for the study of the interaction between collapsing cavitation bubble and matter.


2017 ◽  
Vol 121 (2) ◽  
pp. 353-368 ◽  
Author(s):  
Jari Hyväluoma ◽  
Vesa Niemi ◽  
Mahesh Thapaliya ◽  
Eila Turtola ◽  
Jorma Järnstedt ◽  
...  

Author(s):  
Takeshi Seta ◽  
Kenichi Okui ◽  
Eisyun Takegoshi

We propose a lattice Boltzmann model capable of simulating nucleation. This LBM modifies a pseudo-potential so that it recovers a full set of hydrodynamic equations for two-phase flows based on the van der Waals-Cahn-Hilliard free energy theory through the Chapman-Enskog expansion procedure. Numerical measurements of thermal conductivity and of surface tension agree well with theoretical predictions. Simulations of phase transition, nucleation, pool boiling are carried out. They demonstrate that the model is applicable to two-phase flows with thermal effects. Using finite difference Lattice Boltzmann method ensures numerical stability of the scheme.


2019 ◽  
Author(s):  
Haifeng Wang ◽  
Timm Krüger ◽  
Fathollah Varnik

AbstractBlood flow in an artery is a fluid-structure interaction problem. It is widely accepted that aneurysm formation, enlargement and failure are associated with wall shear stress (WSS) which is exerted by flowing blood on the aneurysmal wall. To date, the combined effect of aneurysm size and wall elasticity on intra-aneurysm (IA) flow characteristics, particularly in the case of side-wall aneurysms, is poorly understood. Here we propose a model of three-dimensional viscous flow in a compliant artery containing an aneurysm by employing the immersed boundary-lattice Boltzmann-finite element method. This model allows to adequately account for the elastic deformation of both the blood vessel and aneurysm walls. Using this model, we perform a detailed investigation of the flow through aneurysm under different conditions with a focus on the parameters which may influence the wall shear stress. Most importantly, it is shown in this work that the use of flow velocity as a proxy for wall shear stress is well justified only in those sections of the vessel which are close to the ideal cylindrical geometry. Within the aneurysm domain, however, the correlation between wall shear stress and flow velocity is largely lost due to the complexity of the geometry and the resulting flow pattern. Moreover, the correlations weaken further with the phase shift between flow velocity and transmural pressure. These findings have important implications for medical applications since wall shear stress is believed to play a crucial role in aneurysm rupture.


2011 ◽  
Vol 33 (7) ◽  
pp. 832-839 ◽  
Author(s):  
Giuseppe Pontrelli ◽  
Carola S. König ◽  
Ian Halliday ◽  
Timothy J. Spencer ◽  
Michael W. Collins ◽  
...  

Author(s):  
Keqiang Xing ◽  
Yong Tao

The lattice Boltzmann method (LBM) as a relatively new numerical scheme has recently achieved considerable success in simulating fluid flows and associated transport phenomena. However, application of this method to heat transfer problems has been at a stage of infancy. In this work, a thermal lattice Boltzmann model is employed to simulate a two-dimensional, steady flow in a symmetric bifurcation under constant temperature and constant heat flux boundary conditions. The bifurcation effects on the heat transfer and fluid flow are investigated and comparisons are made with the straight tube. Also, different bifurcation angles are simulated and the results are compared with the work of the other researchers.


Sign in / Sign up

Export Citation Format

Share Document