Research and Application on Nonlinear Control Algorithms Based on Viscous Dampers

2013 ◽  
Vol 278-280 ◽  
pp. 1500-1503 ◽  
Author(s):  
Jian Jun Liu ◽  
Kuan Jun Zhu

One challenge in the use of semi-active technology is in developing nonlinear control algorithms that are appropriate for implementation in full-scale structures. Based on the basic characteristics of magnetorheological (MR) damper, the structural control algorithms are introduced. The nonlinear control algorithms are systematically reviewed from the aspects including clipped optimal control, LQR control, and Lyapunov stability control. Finally, the existed problem in application and the future developing in research on the structural control algorithms are summarized respectively.

1987 ◽  
Vol 113 (9) ◽  
pp. 1369-1386 ◽  
Author(s):  
Jann N. Yang ◽  
Abbas Akbarpour ◽  
Peiman Ghaemmaghami

Author(s):  
Kushal Solomon ◽  
Deepak Kumar

Abstract Articulated tower is a compliant offshore structure deployed in deep waters for oil and gas exploration. The base of the tower is connected to the sea bed through universal joint, which allows the tower to rotate about horizontal axis (pitch). Articulated towers attain stability due to large buoyancy forces acting on it. Under extreme wave loads, the response of ALP can exceed the design limit causing discomfort to the occupants and create unfavourable working conditions. Structural control systems can be implemented in order to reduce the response of ALP, thereby protecting the structure from damages and to increase its life span. In this paper, a semi-active optimal control strategy using Magneto-Rheological damper is adopted to reduce the responses of ALP. Bouc-Wen model is used to describe the force generated by MR-Damper. For achieving the optimal performance of the control system, the applied voltage is varied according to the measured feedback at any moment to change the damping force using linear quadratic regulator technique. Several parametric studies have been conducted and the performance of the controller is evaluated. It is observed that the response of ALP is reduced considerably by using MR-damper as a semi-active control device. However, the capacity of the damper required for achieving the desired control is huge.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Aly Mousaad Aly

This paper presents vibration control of a building model under earthquake loads. A magnetorheological (MR) damper is placed in the building between the first floor and ground for seismic response reduction. A new control algorithm to command the MR damper is proposed. The approach is inspired by a quasi-bang-bang controller; however, the proposed technique gives weights to control commands in a fashion that is similar to a fuzzy logic controller. Several control algorithms including decentralized bang-bang controller, Lyapunov controller, modulated homogeneous friction controller, maximum energy dissipation controller, and clipped-optimal controller are used for comparison. The new controller achieved the best reduction in maximum interstory drifts and maximum absolute accelerations over all the control algorithms presented. This reveals that the proposed controller with the MR damper is promising and may provide the best protection to the building and its contents.


2008 ◽  
Vol 56 ◽  
pp. 218-224
Author(s):  
Maguid H.M. Hassan

Smart control devices have gained a wide interest in the seismic research community in recent years. Such interest is triggered by the fact that these devices are capable of adjusting their characteristics and/or properties in order to counter act adverse effects. Magneto-Rheological (MR) dampers have emerged as one of a range of promising smart control devices, being considered for seismic applications. However, the reliability of such devices, as a component within a smart structural control scheme, still pause a viable question. In this paper, the reliability of MR dampers, employed as devices within a smart structural control system, is investigated. An integrated smart control setup is proposed for that purpose. The system comprises a smart controller, which employs a single MR damper to improve the seismic response of a single-degree-of-freedom system. The smart controller, in addition to, a model of the MR damper, is utilized in estimating the damper resistance force available to the system. On the other hand, an inverse dynamics model is utilized in evaluating the required damper resistance force necessary to maintain a predefined displacement pattern. The required and supplied forces are, then, utilized in evaluating the reliability of the MR damper. This is the first in a series of studies that aim to explore the effect of other smart control techniques such as, neural networks and neuro fuzzy controllers, on the reliability of MR dampers.


2016 ◽  
Vol 858 ◽  
pp. 145-150
Author(s):  
Yu Liang Zhao ◽  
Zhao Dong Xu

This paper discussed an elastic-plastic time-history analysis on a structure with MR dampers based on member model, in which the elastoplastic member of the structure is assumed to be single component model and simulated by threefold line stiffness retrograde model. In order to obtain better control effect, Linear Quadratic Gaussian (LQG) control algorithm is used to calculate the optimal control force, and Hrovat boundary optimal control strategy is used to describe the adjustable damping force range of MR damper. The effectiveness of the MR damper based on LQG algorithm to control the response of the structure was investigated. The results from numerical simulations demonstrate that LQG algorithm can effectively improve the response of the structure against seismic excitations only with acceleration feedback.


2020 ◽  
Vol 26 (2) ◽  
pp. 24-31
Author(s):  
Omer Aydogdu ◽  
Mehmet Latif Levent

In this study, a new controller design was created to increase the control performance of a variable loaded time varying linear system. For this purpose, a state estimation with reduced order observer and adaptive-LQR (Linear–Quadratic Regulator) control structure was offered. Initially, to estimate the states of the system, a reduced-order observer was designed and used with LQR control method that is one of the optimal control techniques in the servo system with initial load. Subsequently, a Lyapunov-based adaptation mechanism was added to the LQR control to provide optimal control for varying loads as a new approach in design. Thus, it was aimed to eliminate the variable load effects and to increase the stability of the system. In order to demonstrate the effectiveness of the proposed method, a variable loaded rotary servo system was modelled as a time-varying linear system and used in simulations in Matlab-Simulink environment. Based on the simulation results and performance measurements, it was observed that the proposed method increases the system performance and stability by minimizing variable load effect.


Sign in / Sign up

Export Citation Format

Share Document