LSO-AdaBoost Based Face Detection for IP-CAM Video

2013 ◽  
Vol 284-287 ◽  
pp. 3543-3548 ◽  
Author(s):  
Chuang Jan Chang ◽  
Shu Lin Hwang

The IP-CAM plays a major role in the context of digital video surveillance systems. The function of face detection can add extra value and can contribute towards an intelligent video surveillance system. The cascaded AdaBoost-based face detection system proposed by Viola can support real-time detection with a high detection rate. The performance of the Alt2 cascade (from OpenCV) in an IP-CAM video is worse than that with regard to static images because the training data set in the Alt2 cannot consider the localized characters in the special IP-CAM video. Therefore, this study presents an enhanced training method using the Adaboost algorithm which is capable of obtaining the localized sampling optimum (LSO) from a local IP-CAM video. In addition, we use an improved motion detection algorithm that cooperates with the former face detector to speed up processing time and achieve a better detection rate on video-rate processing speed. The proposed solution has been developed around the cascaded AdaBoost approach, using the open-CV library, with a LSO from a local IP-CAM video. An efficient motion detection model is adopted for practical applications. The overall system performance using 30% local samples can be improved to a 97.9% detection rate and reduce detection time by 54.5% with regard to the Alt2 cascade.

2020 ◽  
Vol 37 (6) ◽  
pp. 929-937
Author(s):  
Xiaoying Yang ◽  
Nannan Liang ◽  
Wei Zhou ◽  
Hongmei Lu

This paper integrates skin color model and improved AdaBoost into a face detection method for high-resolution images with complex backgrounds. Firstly, the skin color areas were detected in a multi-color space. Each image was subject to adaptive brightness compensation, and converted into the YCbCr space, and a skin color model was established to solve face similarity. After eliminating the background interference by morphological method, the skin color areas were segmented to obtain the candidate face areas. Next, the inertia weight control factors and random search factor were introduced to optimize the global search ability of particle swarm optimization (PSO). The improved PSO was adopted to optimize the initial connection weights and output thresholds of the neural network. After that, a strong AdaBoost classifier was designed based on optimized weak BPNN classifiers, and the weight distribution strategy of AdaBoost was further improved. Finally, the improved AdaBoost was employed to detect the final face areas among the candidate areas. Simulation results show that our face detection method achieved high detection rate at a fast speed, and lowered false detection rate and missed detection rate.


2021 ◽  
Vol 30 (1) ◽  
pp. 893-902
Author(s):  
Ke Xu

Abstract A portrait recognition system can play an important role in emergency evacuation in mass emergencies. This paper designed a portrait recognition system, analyzed the overall structure of the system and the method of image preprocessing, and used the Single Shot MultiBox Detector (SSD) algorithm for portrait detection. It also designed an improved algorithm combining principal component analysis (PCA) with linear discriminant analysis (LDA) for portrait recognition and tested the system by applying it in a shopping mall to collect and monitor the portrait and establish a data set. The results showed that the missing detection rate and false detection rate of the SSD algorithm were 0.78 and 2.89%, respectively, which were lower than those of the AdaBoost algorithm. Comparisons with PCA, LDA, and PCA + LDA algorithms demonstrated that the recognition rate of the improved PCA + LDA algorithm was the highest, which was 95.8%, the area under the receiver operating characteristic curve was the largest, and the recognition time was the shortest, which was 465 ms. The experimental results show that the improved PCA + LDA algorithm is reliable in portrait recognition and can be used for emergency evacuation in mass emergencies.


2019 ◽  
Vol 22 (13) ◽  
pp. 2907-2921 ◽  
Author(s):  
Xinwen Gao ◽  
Ming Jian ◽  
Min Hu ◽  
Mohan Tanniru ◽  
Shuaiqing Li

With the large-scale construction of urban subways, the detection of tunnel defects becomes particularly important. Due to the complexity of tunnel environment, it is difficult for traditional tunnel defect detection algorithms to detect such defects quickly and accurately. This article presents a deep learning FCN-RCNN model that can detect multiple tunnel defects quickly and accurately. The algorithm uses a Faster RCNN algorithm, Adaptive Border ROI boundary layer and a three-layer structure of the FCN algorithm. The Adaptive Border ROI boundary layer is used to reduce data set redundancy and difficulties in identifying interference during data set creation. The algorithm is compared with single FCN algorithm with no Adaptive Border ROI for different defect types. The results show that our defect detection algorithm not only addresses interference due to segment patching, pipeline smears and obstruction but also the false detection rate decreases from 0.371, 0.285, 0.307 to 0.0502, respectively. Finally, corrected by cylindrical projection model, the false detection rate is further reduced from 0.0502 to 0.0190 and the identification accuracy of water leakage defects is improved.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Liu ◽  
Xiaofeng Wang ◽  
Kaiyu Liu

Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network—complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each senor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor’s regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly.


2013 ◽  
Vol 347-350 ◽  
pp. 3619-3623
Author(s):  
Bing Li ◽  
Yuan Yan Tang ◽  
Di Wen ◽  
Zhen Chao Zhang ◽  
Bo Yang Ding

This paper briefly introduced the development of video face detection and point out the shortage of current face detection system that may produce much of false alarms. Then we detail the classic Viola face detector which using integral image, Haar-like features and AdaBoost algorithm for training. Compared with Viola face detector, we proposed an available multi-model fusion method to reduce false alarms in video face detection that is combining head-shoulder detector with HOG features. After introduced the related knowledge of HOG features, we proposed a fusion detector structure which can improve the accuracy and efficiency of detection.


Author(s):  
LEE SENG YEONG ◽  
LI-MINN ANG ◽  
KING HANN LIM ◽  
KAH PHOOI SENG

A dynamic counterpropagation network based on the forward only counterpropagation network (CPN) is applied as the classifier for face detection. The network, called the dynamic supervised forward-propagation network (DSFPN) trains using a supervised algorithm that grows dynamically during training allowing subclasses in the training data to be learnt. The network is trained using a reduced dimensionality categorized wavelet coefficients of the image data. Experimental results obtained show that a 94% correct detection rate can be achieved with less than 6% false positives.


2020 ◽  
Vol 17 (5) ◽  
pp. 2342-2348
Author(s):  
Ashutosh Upadhyay ◽  
S. Vijayalakshmi

In the field of computer vision, face detection algorithms achieved accuracy to a great extent, but for the real time applications it remains a challenge to maintain the balance between the accuracy and efficiency i.e., to gain accuracy computational cost also increases to deal with the large data sets. This paper, propose half face detection algorithm to address the efficiency of the face detection algorithm. The full face detection algorithm consider complete face data set for training which incur more computation cost. To reduce the computation cost, proposed model captures the features of the half of the face by assuming that the human face is symmetric about the vertical axis passing through the nose and train the system using reduced half face features. The proposed algorithm extracts Linear Binary Pattern (LBP) features and train model using adaboost classifier. Algorithm performance is presented in terms of the accuracy i.e., True Positive Rate (TPR), False Positive Rate (FTR) and face recognition time complexity.


Sign in / Sign up

Export Citation Format

Share Document