Design of Variable Structure Control with Bounded Inputs

2010 ◽  
Vol 29-32 ◽  
pp. 1175-1180
Author(s):  
Qing Kun Zhou ◽  
Sheng Jian Bai ◽  
Zhi Yong Zhang

The design of variable structure system inputs which are constrained by saturation is studied. For a LTI system which satisfies some conditions, it is shown that appropriate bounded controllers guarantee the system’s global stability and maximize the sliding mode domain on the switching surfaces. Stability conditions of variable structure systems with constrained inputs are relaxed, and the stability of the closed-loop system is guaranteed by using passivity theory of linear passive systems. Moreover, nonlinear sliding surfaces are discussed for variable structure controller design, and a novel nonlinear switching surface is proposed. Finally, the proposed methods are applied to a 2nd order LTI system to show their usefulness.

Author(s):  
Shubo Yang ◽  
Xi Wang

Limit protection, which frequently exists as an auxiliary part in control systems, is not the primary motive of control but is a necessary guarantee of safety. As in the case of aircraft engine control, the main objective is to provide the desired thrust based on the position of the throttle; nevertheless, limit protection is indispensable to keep the engine operating within limits. There are plenty of candidates that can be applied to design the regulators for limit protection. PID control with gain-scheduling technique has been used for decades in the aerospace industry. This classic approach suggests linearizing the original nonlinear model at different power-level points, developing PID controllers correspondingly, and then scheduling the linear time-invariant (LTI) controllers according to system states. Sliding mode control (SMC) is well-known with mature theories and numerous successful applications. With the one-sided convergence property, SMC is especially suitable for limit protection tasks. In the case of aircraft engine control, SMC regulators have been developed to supplant traditional linear regulators, where SMC can strictly keep relevant outputs within their limits and improve the control performance. In aircraft engine control field, we all know that the plant is a nonlinear system. However, the present design of the sliding controller is carried out with linear models, which severely restricts the valid scope of the controller. Even if the gain scheduling technique is adopted, the stability of the whole systems cannot be theoretically proved. Research of linear parameter varying (LPV) system throws light on a class of nonlinear control problems. In present works, we propose a controller design method based on the LPV model to solve the engines control problem and achieve considerable effectiveness. In this paper, we discuss the design of a sliding controller for limit protection task of aircraft engines, the plant of which is described as an LPV system instead of LTI models. We define the sliding surface as tracking errors and, with the aid of vertex property, present the stability analysis of the closed-loop system on the sliding surface. An SMC law is designed to guarantee that the closed-loop system is globally attracted to the sliding surface. Hot day (ISA+30° C) takeoff simulations based on a reliable turbofan model are presented, which test the proposed method for temperature protection and verify its stability and effectiveness.


2019 ◽  
Vol 20 (8) ◽  
pp. 451-460 ◽  
Author(s):  
A. A. Kolesnikov ◽  
A. A. Kuz’menko

Sliding mode control (SMC) laws are commonly used in engineering to make a system robust to parameters change, external disturbances and control object unmodeled dynamics. State-of-the-art capabilities of the theory of adaptive and robust control, the theory of fuzzy systems, artificial neural networks, etc., which are combined with SMC, couldn’t resolve current issues of SMC design: vector design and stability analysis of a closed-loop system with SMC are involved with considerable complexity. Generally the classical problem of SMC design consists in solving subtasks for transit an object from an arbitrary initial position onto the sliding surface while providing conditions for existence of a sliding mode at any point of the sliding surface as well as ensuring stable movement to the desired state. As a general rule these subtasks are solved separately. This article presents a methodology for SMC design based on successive aggregation of invariant manifolds by the procedure of method of Analytical Design of Aggregated Regulators (ADAR) from the synergetic control theory. The methodology allows design of robust control laws and simultaneous solution of classical subtasks of SMC design for nonlinear objects. It also simplifies the procedure for closed-loop system stability analyze: the stability conditions are made up of stability criterions for ADAR method functional equations and the stability criterions for the final decomposed system which dimension is substantially less than dimension of the initial system. Despite our paper presents only the scalar SMC design procedure in details, the ideas are also valid for vector design procedure: the main difference is in the number of invariant manifolds introduced at the first and following stages of the design procedure. The methodology is illustrated with design procedure examples for nonlinear engineering systems demonstrating the achievement of control goals: hitting to target invariants, insensitivity to emerging parametric and external disturbances.


2012 ◽  
Vol 151 ◽  
pp. 626-631
Author(s):  
Qiang Ma ◽  
Jian Gang Lu ◽  
Qin Min Yang ◽  
Jin Shui Chen ◽  
You Xian Sun

This work proposes a generalized predictive control (GPC) based controller for the temperature of HVAC chilled water supply. In this paper, several models of evaporator are firstly introduced, wherein an identified black-box model is selected for the purpose of controller design. Based on this model, a GPC based controller is employed to obtain a satisfactory performance even with the presence of disturbance. The theoretical results show the stability of the closed-loop system and the performance of this scheme is compared with that of traditional PID controller under simulation environment.


Author(s):  
R. B. Potts ◽  
X. Yu

AbstractVariable structure systems with sliding modes have been widely discussed and used in many different fields of applications. The precise behaviour at a switching surface is complicated because there the system is non-analytic. The damped simple harmonic oscillator with a nonlinear variable structure is discretised and analysed in detail, revealing the occurrence and structure of pseudo-sliding modes which give insight to the corresponding sliding modes for the continuous system. Necessary and sufficient conditions are obtained and the analysis illustrated with graphs from numerical solutions.


Author(s):  
Nassim Khaled ◽  
Nabil G. Chalhoub

A self-tuning fuzzy-sliding mode controller is presented in the current work. It aims at combining the advantages of the variable structure systems (VSS) theory with the self-tuning fuzzy logic controller. Neither the development of an accurate dynamic model of the plant nor the construction of a rule-based expert system is required for designing the controller. The only requirement is that the upper bound of the modeling uncertainties has to be known. The stability of the controlled system is ensured by forcing the tuning parameter to satisfy the sliding condition. The controller is implemented to control the heading of an under-actuated ship. The simulation results demonstrate the robust performance of the controller in accurately tracking the desired yaw angle specified by the guidance system in the presence of considerable modeling imprecision and environmental disturbances.


Author(s):  
Nga Thi-Thuy Vu

This paper presents a robust adaptive controller that does not depend on the system parameters for an excavator arm. Firstly, the model of the excavator arm is demonstrated in the Euler-Lagrange form considering with overall excavator system. Next, a robust adaptive controller has been constructed from information of state error. In this paper, the stability of overall system is mathematically proven by using Lyapunov stability theory. Also, the proposed controller is model free then the closed loop system is not affected by disturbances and uncertainties. Finally, the simulation is executed in Matlab/Simulink for both presented scheme and the PD controller under some conditions to ensure that the proposed algorithm given the good performances for all cases.


Author(s):  
Čedomir Milosavljević ◽  
Branislava Peruničić-Draženović ◽  
Senad Huseinbegović ◽  
Boban Veselić ◽  
Milutin P. Petronijević

Modern control techniques of electrical drives (EDs) use robust control algorithms. One of such algorithms is variable structure control (VSC) with sliding mode (SM). SM control needs more information on the controlled plant than the conventional PI(D) control. Valid mathematical model of the controlled plant is necessary for the SM controller design. Generalized mathematical model of two-phase electrical machine and its adaptation to direct current (DC) and induction motor (IM) are given in this paper, employed in the cascade control structure. Also, the basic SM control theory and discrete-time controller design approach, developed by the authors, are given. Finally, experimentally realized examples of speed and position control of DC and IM are given as an illustration of the efficiency of the promoted EDs controller design via discrete-time VSC.


1999 ◽  
Vol 121 (1) ◽  
pp. 139-142 ◽  
Author(s):  
Koan-Yuh Chang ◽  
Wen-June Wang

Based on the concept of variable structure control, this paper investigates the local state covariance assignment problem for stochastic large-scale systems. By using the invariance property of variable structure systems, the interconnection terms with matching condition will disappear on the sliding mode. With the aid of Ito-formula, the hitting controller of each subsystem is derived. Combining the sliding phase and hitting phase of the system design, the local feedback gain matrix Gi for each subsystem is obtained to achieve the local state covariance assignment.


Author(s):  
G P Liu ◽  
G R Duan ◽  
S Daley

The design of stable observer-based controllers for robust pole assignment is addressed in this paper. The stability problem of these dynamical controllers is investigated, which is often ignored during the controller design. A design formulation of stable observer controllers is presented using state-feedback pole assignment techniques. Although the design formulation is principally aimed at the design of a stable controller, the mixed sensitive function in the frequency domain is also considered to improve the robustness of the closed-loop system. This ensures that the closed-loop system has good robustness and the controller is stable.


Sign in / Sign up

Export Citation Format

Share Document