FSI Research on the Noise Barrier of High-Speed Railway in the Composite Conditions

2013 ◽  
Vol 307 ◽  
pp. 149-155
Author(s):  
Hong Chao Wang ◽  
Jin Fa Xie

Based on the model, it firstly gets the fluid distribution of noise barrier of high-speed railway, which is under the action of train-induced impulsive wind pressure and natural wind load, then transfers the computed result as exported load to the structural analysis module through the coupling interface, by proceeding the transient dynamic analysis and modal analysis, it finally obtains the equivalent stress, total deformation and modal distribution of noise barrier. The results indicate that, compared with train-induced impulsive wind pressure, the natural wind load has a more obvious effect on the structural performance of noise barrier, and its natural frequency is much less than the external load’s, so there will be no resonate happen in practice.

2016 ◽  
Author(s):  
Bingqian Liu ◽  
Shuangyun Shao ◽  
Qibo Feng ◽  
Le Ma ◽  
Kim Cholryong

2012 ◽  
Vol 452-453 ◽  
pp. 1518-1521 ◽  
Author(s):  
Ling Ling Zhou ◽  
Xi Feng Liang ◽  
Ming Zhi Yang ◽  
Sha Huang

Based on 3-d, uncompressible onflow model with steady N-S equation and the k-epsilon double equation, aerodymic characteristics of EMU and windbreaks on bridge under cross wind were studied numerically, the results show: (1) compared to no windbreak, EMU overturning moment was decreased 50% by setting general windbreak , 75% by setting ventilated windbreak; ventilated windbreak’s protective effect on train and pantograph-catenary system is better especially when H≥2.5m ; (2) aerodynamic load on ventilated windbreak is far lower than general windbreak; (3)the higher cross-wind velocity is, the more aerodynamic load decreased when setting ventilated windbreak. Besides, ventilated windbreak’s leak form could significantly reduce bridge’s self gravity and wind load, improve wind break ability and EMU operation safety.


2019 ◽  
Vol 9 (19) ◽  
pp. 4165 ◽  
Author(s):  
Song ◽  
Du ◽  
Zhang ◽  
Sun

With increases in train speed and traffic density, problems due to wheel polygons and those caused by wheel–rail impacts will increase accordingly, which will affect train operational safety and passenger ride comfort. This paper investigates the effects of polygonal wheels on the dynamic performance of the track in a high-speed railway system. The wheel–rail interaction forces caused by wheel polygons are determined using a dynamic vehicle–track model, and the results are entered into a slab track finite element model. The influence of the harmonic order and out-of-roundness (OOR) amplitude of wheel polygons on the transient dynamic characteristics of the track(von Mises equivalent stress, displacement, and acceleration) is examined under high-speed conditions. The results indicate that the vibration acceleration and von Mises equivalent stress of the rail increase in proportion to the harmonic order and the OOR amplitude and velocity of a polygonized wheel. The vibration displacement of the rail first increases and then decreases with a change in the harmonic order, and reaches a maximum at the ninth order. The dynamic responses of the concrete slab layer, cement-asphalt layer, and support layer increase linearly with the harmonic order and amplitude of wheel polygons and decrease from top to bottom. Through a combination of numerical simulations and real-time monitoring of rail vibrations, this study provides guidance on potential sensor locations to identify polygonized wheels before they fail.


2021 ◽  
Vol 13 (4) ◽  
pp. 2096
Author(s):  
Xiaoping Wu ◽  
Ye Zhu ◽  
Lingxiao Xian ◽  
Yingkai Huang

The fatigue state of the semi-closed noise barrier directly affects driving safety, and replacement after damage leads to train delays and increased operating costs. It is more eco-friendly and sustainable to predict the fatigue life of noise barriers to reinforce the structure in time. However, previous life prediction methods provide a limited reference in the design stage. In this study, a novel fatigue life prediction method for noise barriers was proposed. The computational fluid dynamics and finite element model of the semi-closed noise barrier were established and subjected to simulated natural wind and train aerodynamic impulse wind loads to calculate the stress time-history on the noise barrier. Based on the rain flow counting method and Miner linear cumulative fatigue damage theory, the fatigue life of noise barriers in three Chinese cities was predicted. The results show that the fatigue life of the noise barrier is closely related to the wind conditions and train operation modes. Targeted reinforcement for noise barriers in different fatigue states can save materials and reduce maintenance workload. Moreover, the influence of wind load on the noise barrier was summarized, and engineering suggestions on prolonging the fatigue life of noise barriers were put forward.


2016 ◽  
Vol 366 ◽  
pp. 293-308 ◽  
Author(s):  
Munemasa Tokunaga ◽  
Masamichi Sogabe ◽  
Tetsuo Santo ◽  
Kiyoshi Ono

Sign in / Sign up

Export Citation Format

Share Document