Study of Fiber Bragg Grating Sensor in Dam Safety Monitoring

2013 ◽  
Vol 312 ◽  
pp. 736-740 ◽  
Author(s):  
Ying Xiang Luo

As Optical fiber communication technology is developing towards high-speed and high-capacity, continual evolution to the all-optical network. In the lead of the mushroom development of Optical communication, Fiber Bragg Grating (FBG) is become one of the most mushroom optical passive components. This article will discuss about application of Fiber Bragg grating (FBG) sensor in dam safety monitoring, to improve the management and maintenance of dam.

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Farman Ali ◽  
Yousaf Khan ◽  
Amjad Ali ◽  
Gulzar Ahmad

AbstractHigh-capacity and long-haul transmission gained great significance in modern communication networks. Optical fiber communication system is good enough to face the high demand of current telecom terrific. This paper will propound the theoretical model showing nonlinear factors which degrade the transmission performances of high-capacity long-haul network. The postulatory model will be validated using simulation of key nonlinear factors such as effective area, launch power, refractive index and fiber length. The transmission performance of the high-capacity long-haul optical network would be analyzed on the basis of some key parameters such as bit error rate and signal-to-noise ratio. Mitigation of nonlinear impairments shows significant impact on transmission performances of high-capacity long-haul optical networks.


Author(s):  
Huijuan Dong ◽  
Shaopeng Yang ◽  
Jun He ◽  
Guangyu Zhang ◽  
Siying Wang ◽  
...  

Optical fiber sensor technology is more and more widely applied in the health monitoring testing of the major projects and infrastructure, because its sensing elements possess characteristics like the small size, high durability, absolute measurement and distributed monitoring. With the development of the optical fiber communication technology, several different kinds of passive devices appear continuously. Fiber Bragg Grating (FBG for short) develops continuingly and speedily in the field of optical fiber communication and sensing technology, owing to its good properties, such as low insertion loss, wavelength absolute coding, being independence on polarization, the flexible adjustment of wavelength and bandwidth and easily connect to fiber. But Fiber Bragg Grating is sensitive about two parameters — the changing temperature and the outside strain. Therefore, cross sensitivity becomes the hot issue. This paper will introduce the temperature compensation technology of the strain monitoring system for a quasi-distributed Fiber Bragg Grating.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Suresh Kumar ◽  
Shiwani Rathee ◽  
Payal Arora ◽  
Deepak Sharma

AbstractThe optical fiber communication offers a huge bandwidth for data transmission at higher data rates but to increase the throughput for long-haul networks, metro data links, and data centers, additional fiber is required which is not economical. For effective reception of signals at the receiver, the photo detector in optical communication requires higher efficiency, lower noise, ultrafast response and optimum received signal strength. The inherent dispersion and nonlinear impairments in optical fiber communication system can be overcome by using the Fiber Bragg Grating (FBG) which is a Dispersion Compensating Module. FBG helps to improve the long-haul transmission by providing an efficient system performance. This paper presents a detailed review of FBG and photo detectors and their use in an Optical communication system. This paper will help the researchers to find useful material at a single platform.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Suresh Kumar ◽  
Shiwani Rathee ◽  
Payal Arora

AbstractApplication of fiber Bragg grating (FBG) in optical communication is an evolving field. In this research paper, various types of chirped FBG’s (CFBG) have been used with avalanche photodiode (APD) on the designed optical fiber communication (OFC) link. Data rate of 20 Gbps and return-to-zero modulation format has been kept as fixed parameters. The designed link has been evaluated for varying fiber lengths (100, 200, 300, 400 and 500 km), various type of CFBG’s (linear, quadratic, square root and cubic root) with Gaussian apodization function, varying grating lengths (10, 20, 30, 40 and 50 mm) and operating temperatures (5°C, 10°C, 15°C, 20°C, 25°C, 30°C). The designed OFC link has also been evaluated for APD with and without CFBG. The performance evaluation matrix parameters selected are Q-factor, bit error rate and eye diagram. The OFC link employing CFBG with APD has been found to be superior. In compensating chromatic dispersion, optimum results have been observed for linear CFBG with Gaussian apodization function in comparison to other types of CFBG with 50 mm grating length for the maximum transmission distance.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Festus Idowu Oluwajobi ◽  
Nguyen Dong-Nhat ◽  
Amin Malekmohammadi

AbstractIn this paper, the performance of a novel multilevel signaling based on Manchester code namely four-level Manchester Coding (4-MC) technique is investigated for next generation high-speed optical fiber communication links. The performance of 4-MC is studied and compared with conventional Manchester modulation and four-level pulse amplitude modulation (4-PAM) formats in terms of receiver sensitivity, spectral efficiency and dispersion tolerance at the bit rate of 40 Gb/s. The bit error rate (BER) calculation model for the proposed multilevel scheme has also been developed. The calculated receiver sensitivity and the chromatic dispersion tolerance at the BER of 10–9 of the proposed scheme are −22 dBm and 67.5 ps/nm, respectively. It is observed that, 4-MC scheme is superior in comparison to 4-PAM by 3.5 dB in terms of receiver sensitivity in back-to-back scenario. Therefore, the proposed scheme can be considered as an alternative to current 4-PAM system.


Sign in / Sign up

Export Citation Format

Share Document