Local Patch Similarity Ranked Voxelwise STAPLE on Magnetic Resonance Image Hippocampus Segmentation

2013 ◽  
Vol 333-335 ◽  
pp. 1065-1070
Author(s):  
Yuan Li ◽  
Fu Cang Jia ◽  
Xiao Dong Zhang ◽  
Cheng Huang ◽  
Huo Ling Luo

The segmentation and labeling of sub-cortical structures of interest are important tasks for the assessment of morphometric features in quantitative magnetic resonance (MR) image analysis. Recently, multi-atlas segmentation methods with statistical fusion strategy have demonstrated high accuracy in hippocampus segmentation. While, most of the segmentations rarely consider spatially variant model and reserve all segmentations. In this study, we propose a novel local patch-based and ranking strategy for voxelwise atlas selection to extend the original Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm. The local ranking strategy is based on the metric of normalized cross correlation (NCC). Unlike its predecessors, this method estimates the fusion of each voxel patch-by-patch and makes use of gray image features as a prior. Validation results on 33 pairs of hippocampus MR images show good performance on the segmentation of hippocampus.

2020 ◽  
pp. 1-12
Author(s):  
Wu Xin ◽  
Qiu Daping

The inheritance and innovation of ancient architecture decoration art is an important way for the development of the construction industry. The data process of traditional ancient architecture decoration art is relatively backward, which leads to the obvious distortion of the digitalization of ancient architecture decoration art. In order to improve the digital effect of ancient architecture decoration art, based on neural network, this paper combines the image features to construct a neural network-based ancient architecture decoration art data system model, and graphically expresses the static construction mode and dynamic construction process of the architecture group. Based on this, three-dimensional model reconstruction and scene simulation experiments of architecture groups are realized. In order to verify the performance effect of the system proposed in this paper, it is verified through simulation and performance testing, and data visualization is performed through statistical methods. The result of the study shows that the digitalization effect of the ancient architecture decoration art proposed in this paper is good.


2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2021 ◽  
Vol 8 (7) ◽  
pp. 97-105
Author(s):  
Ali Ahmed ◽  
◽  
Sara Mohamed ◽  

Content-Based Image Retrieval (CBIR) systems retrieve images from the image repository or database in which they are visually similar to the query image. CBIR plays an important role in various fields such as medical diagnosis, crime prevention, web-based searching, and architecture. CBIR consists mainly of two stages: The first is the extraction of features and the second is the matching of similarities. There are several ways to improve the efficiency and performance of CBIR, such as segmentation, relevance feedback, expansion of queries, and fusion-based methods. The literature has suggested several methods for combining and fusing various image descriptors. In general, fusion strategies are typically divided into two groups, namely early and late fusion strategies. Early fusion is the combination of image features from more than one descriptor into a single vector before the similarity computation, while late fusion refers either to the combination of outputs produced by various retrieval systems or to the combination of different rankings of similarity. In this study, a group of color and texture features is proposed to be used for both methods of fusion strategies. Firstly, an early combination of eighteen color features and twelve texture features are combined into a single vector representation and secondly, the late fusion of three of the most common distance measures are used in the late fusion stage. Our experimental results on two common image datasets show that our proposed method has good performance retrieval results compared to the traditional way of using single features descriptor and also has an acceptable retrieval performance compared to some of the state-of-the-art methods. The overall accuracy of our proposed method is 60.6% and 39.07% for Corel-1K and GHIM-10K ‎datasets, respectively.


2020 ◽  
Vol 34 (07) ◽  
pp. 11717-11724
Author(s):  
Wenfeng Luo ◽  
Meng Yang

Current weakly-supervised semantic segmentation methods often estimate initial supervision from class activation maps (CAM), which produce sparse discriminative object seeds and rely on image saliency to provide background cues when only class labels are used. To eliminate the demand of extra data for training saliency detector, we propose to discover class pattern inherent in the lower layer convolution features, which are scarcely explored as in previous CAM methods. Specifically, we first project the convolution features into a low-dimension space and then decide on a decision boundary to generate class-agnostic maps for each semantic category that exists in the image. Features from Lower layer are more generic, thus capable of generating proxy ground-truth with more accurate and integral objects. Experiments on the PASCAL VOC 2012 dataset show that the proposed saliency-free method outperforms the previous approaches under the same weakly-supervised setting and achieves superior segmentation results, which are 64.5% on the validation set and 64.6% on the test set concerning mIoU metric.


Sign in / Sign up

Export Citation Format

Share Document