hippocampus segmentation
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 39)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Vol 27 (1) ◽  
pp. 68-78
Author(s):  
Hongxia Deng ◽  
Yuefang Zhang ◽  
Ran Li ◽  
Chunxiang Hu ◽  
Zijian Feng ◽  
...  

Author(s):  
Soraya Nasser ◽  
Moulkheir Naoui ◽  
Ghalem Belalem ◽  
Saïd Mahmoudi

The Automatic semantic segmentation of the hippocampus is an important area of research in which several convolutional neural networks (CNN) models have been used to detect the hippocampus from whole cerebral MRI. In this paper we present two convolutional neural networks the first network ( Hippocampus Segmentation Single Entity HSSE) segmented the hippocampus as a single entity and the second used to detect the hippocampal sub-regions ( Hippocampus Segmentation Multi Class HSMC), these two networks inspire their architecture of the U-net model. Two cohorts were used as training data from (NITRC) (NeuroImaging Tools & Resources Collaboratory (NITRC)) annotated by ITK-SNAP software. We analyze this networks alongside other recent methods that do hippocampal segmentation, the results obtained are encouraging and reach dice scores greater than 0.84


The Automatic semantic segmentation of the hippocampus is an important area of research in which several convolutional neural networks (CNN) models have been used to detect the hippocampus from whole cerebral MRI. In this paper we present two convolutional neural networks the first network ( Hippocampus Segmentation Single Entity HSSE) segmented the hippocampus as a single entity and the second used to detect the hippocampal sub-regions ( Hippocampus Segmentation Multi Class HSMC), these two networks inspire their architecture of the U-net model. Two cohorts were used as training data from (NITRC) (NeuroImaging Tools & Resources Collaboratory (NITRC)) annotated by ITK-SNAP software. We analyze this networks alongside other recent methods that do hippocampal segmentation, the results obtained are encouraging and reach dice scores greater than 0.84


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaogang Ren ◽  
Yue Wu ◽  
Zhiying Cao

Since the hippocampus is of small size, low contrast, and irregular shape, a novel hippocampus segmentation method based on subspace patch-sparsity clustering in brain MRI is proposed to improve the segmentation accuracy, which requires that the representation coefficients in different subspaces should be as sparse as possible, while the representation coefficients in the same subspace should be as average as possible. By restraining the coefficient matrix with the patch-sparse constraint, the coefficient matrix contains a patch-sparse structure, which is helpful to the hippocampus segmentation. The experimental results show that our proposed method is effective in the noisy brain MRI data, which can well deal with hippocampus segmentation problem.


Author(s):  
Wenna Wang ◽  
Xiuwei Zhang ◽  
Yu Ma ◽  
Hengfei Cui ◽  
Rui Xia ◽  
...  

Author(s):  
Cory Efird ◽  
Samuel Neumann ◽  
Kevin G Solar ◽  
Christian Beaulieu ◽  
Dana Cobzas

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2427
Author(s):  
Samaneh Nobakht ◽  
Morgan Schaeffer ◽  
Nils Forkert ◽  
Sean Nestor ◽  
Sandra E. Black ◽  
...  

Hippocampus atrophy is an early structural feature that can be measured from magnetic resonance imaging (MRI) to improve the diagnosis of neurological diseases. An accurate and robust standardized hippocampus segmentation method is required for reliable atrophy assessment. The aim of this work was to develop and evaluate an automatic segmentation tool (DeepHarp) for hippocampus delineation according to the ADNI harmonized hippocampal protocol (HarP). DeepHarp utilizes a two-step process. First, the approximate location of the hippocampus is identified in T1-weighted MRI datasets using an atlas-based approach, which is used to crop the images to a region-of-interest (ROI) containing the hippocampus. In the second step, a convolutional neural network trained using datasets with corresponding manual hippocampus annotations is used to segment the hippocampus from the cropped ROI. The proposed method was developed and validated using 107 datasets with manually segmented hippocampi according to the ADNI-HarP standard as well as 114 multi-center datasets of patients with Alzheimer’s disease, mild cognitive impairment, cerebrovascular disease, and healthy controls. Twenty-three independent datasets manually segmented according to the ADNI-HarP protocol were used for testing to assess the accuracy, while an independent test-retest dataset was used to assess precision. The proposed DeepHarp method achieved a mean Dice similarity score of 0.88, which was significantly better than four other established hippocampus segmentation methods used for comparison. At the same time, the proposed method also achieved a high test-retest precision (mean Dice score: 0.95). In conclusion, DeepHarp can automatically segment the hippocampus from T1-weighted MRI datasets according to the ADNI-HarP protocol with high accuracy and robustness, which can aid atrophy measurements in a variety of pathologies.


Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06226
Author(s):  
Diedre Carmo ◽  
Bruna Silva ◽  
Clarissa Yasuda ◽  
Letícia Rittner ◽  
Roberto Lotufo

Sign in / Sign up

Export Citation Format

Share Document