Research of a New Form Traveler on Cable-Stayed Bridge

2013 ◽  
Vol 333-335 ◽  
pp. 2119-2122
Author(s):  
Xiao Lei ◽  
Yong Jun Zhou ◽  
Yu Feng Liu ◽  
Yu Zhou ◽  
Jian Min Wang

The second Penang Bridge is a new bridge under construction in Penang, and will become the longest bridge in Malaysia and Southeast Asia. The purpose of this test is to estimate the bearing capacity of the form travelers in the second Penang Bridge. The pre-loading test simulates the construction stage of the typical edge beam and slab section. By observing the strain and deformation data of the form travelers, stress and displacement were analyzed to ascertain the performance and safety of form travelers and to provide evidence for the main beam alignment control in construction.

2021 ◽  
Vol 11 (4) ◽  
pp. 1693
Author(s):  
Jang-Woon Baek ◽  
Su-Min Kang

Multi-tee-type precast concrete (PC) slab systems are widely used for the construction of modular high-load long-span buildings. However, the structural safety of the dapped end is uncertain, owing to the unanchored shear reinforcement at the construction stage. This study proposes the use of clip-type shear reinforcement at the dapped ends of multi-tee PC slabs to secure their structural performance at the construction stage. To investigate the performance of this approach, a monotonic loading test was performed on simply supported PC slabs, considering structural safety at the construction stage. The reinforcement details of the PC slab’s dapped end (with existing Z-type or proposed clip-type shear reinforcement) and the shear-to-span ratio (12.8 or 6.4) were considered as test parameters. The load–deflection relationship, failure mode, strength ratios to the predicted strength, and shear reinforcement strains were analyzed. The results showed that the tested flexural strength ratio of the PC slabs at the construction stage to the design flexural strength was 1.20–1.40. The enclosed shape and diagonal arrangement of the clip-type shear reinforcement enabled sufficient anchorage performance at the dapped end, indicating that clip-type shear reinforcement can be viable for use at the dapped ends of PC slabs under construction loads.


2014 ◽  
Vol 587-589 ◽  
pp. 1558-1562
Author(s):  
Hai Hong Mo

The nonlinear basic theory and nonlinear influence factor of cable-stayed bridge has been introduced. Quantitative analysis to the sag effect, beam-column effect and large deformation effect has been done based on a cable-stayed bridge. Analysis show that the sag effect, beam-column effect and large deformation effect of cable force is not obvious, but the sag effect should not been ignored in the calculation of the main beam.


2021 ◽  
Author(s):  
Xing Wang ◽  
YANG WU ◽  
Jie Cui ◽  
Chang-qi Zhu ◽  
Xin-zhi Wang

Abstract The landforms and vertical strata distribution characteristics of Yongxing Island show that the reclaimed reef island is characterized by soft upper strata (calcareous sand) and hard lower strata (reef limestone). In this study, a series of plate loading tests was conducted to examine the influences of particle gradation, compactness, and moisture condition on the bearing mechanism and deformation properties of the calcareous sand foundation. When the foundation is shallowly buried, the relative density range corresponding to a calcareous sand foundation exhibiting local shear failure is narrower than that of a terrigenous sand foundation. For the same compactness, dry calcareous medium sand has a much larger bearing capacity and deformation modulus than dry calcareous fine sand. The effect of water on the bearing capacity of the calcareous medium sand is greater than the effect on calcareous fine sand. Its weak cementation and low permeability make the initial deformation of saturated calcareous fine sand slightly smaller than that under dry conditions. The stress dispersion angle of the calcareous medium sand foundation is 52°, which is larger than that of terrigenous sand. A larger stress dispersion angle leads to a higher bearing capacity and deformation modulus than those of terrigenous sand.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jianlei Liu ◽  
Meng Ma ◽  
Flavio Stochino

The bearing capacity evaluation of bridge substructures is difficult as the static loading test (SLT) cannot be employed for the bridges in services. As a type of dynamic nondestructive test technique, the dynamic transient response method (TRM) could be employed to estimate the vertical bearing capacity when the relationship between static stiffness and dynamic stiffness is known. The TRM is usually employed to evaluate single piles. For the pier-cap-pile system, its applicability should be investigated. In the present study, a novel full-scale experimental study, including both TRM test and SLT, was performed on an abandoned bridge pier with grouped pile foundation. The test included three steps: firstly, testing the intact pier-cap-pile system; then, cutting off the pier and testing the cap-pile system; finally, cutting off the cap and testing the single pile. The TRM test was repeatedly performed in the above three steps, whereas the SLT was only performed on the cap-pile system. Based on the experimental results, the ratio of dynamic and static stiffness of the cap-pile system was obtained. The results show that (1) in the low-frequency range (between 10 and 30 Hz in this study), the dynamic stiffness of the whole system is approximately four times of that of a single pile; (2) the ratio of dynamic and static stiffness of the cap-pile system tested in the study is approximately 1.74, which was similar to other tested values of a single pile; (3) to evaluate the capacity of similar cap-pile system and with similar soil layer conditions by TRM, the value of Kd/Ks tested in the study can be used as a reference.


Sign in / Sign up

Export Citation Format

Share Document