Research on Innovative Product Design Method and Support System for Man-Machine Cooperation

2010 ◽  
Vol 34-35 ◽  
pp. 701-706
Author(s):  
X.Y. Liu ◽  
Yang Yin ◽  
L.P. Zhou

According to the limitations of existing innovative design methods, a research ideology was proposed, namely man-machine intelligent collaboration. Based on this ideology, the characteristics of information exchange between human information processing system and external design environment was analyzed, and the inherent mechanism of man-machine intelligent collaboration was explored. Moreover, some cognitive principles that the support system should follow were put forward. In terms of the characteristics of product design, incorporating cognitive science, information technology, and design technology, a computer-aided innovative product design process was presented. Finally, a preliminary prototype system of computer-aided design for product innovation was developed based on the theoretical researches aforementioned and some running instances of the prototype system were described.

2005 ◽  
Vol 5 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Tomoyuki Fujimori ◽  
Hiromasa Suzuki ◽  
Yohei Kobayashi ◽  
Kiwamu Kase

This paper describes a new algorithm for contouring a medial surface from CT (computed tomography) data of a thin-plate structure. Thin-plate structures are common in mechanical structures, such as car body shells. When designing thin-plate structures in CAD (computer-aided design) and CAE (computer-aided engineering) systems, their shapes are usually represented as surface models associated with their thickness values. In this research, we are aiming at extracting medial surface models of thin-plate structures from their CT data for use in CAD and CAE systems. Commonly used isosurfacing methods, such as marching cubes, are not applicable to contour the medial surface. Therefore, we first extract medial cells (cubes comprising eight neighboring voxels) from the CT data using a skeletonization method to apply the marching cubes algorithm for extracting the medial surface. It is not, however, guaranteed that the marching cubes algorithm can contour those medial cells (in short, not “marching cubeable”). In this study, therefore we developed cell operations that correct topological connectivity to guarantee such marching cubeability. We then use this method to assign virtual signs to the voxels to apply the marching cubes algorithm to generate triangular meshes of a medial surface and map the thicknesses of thin-plate structures to the triangle meshes as textures. A prototype system was developed to verify some experimental results.


2014 ◽  
Vol 494-495 ◽  
pp. 358-364
Author(s):  
Wei Tian

Industrial design is an emerging edge science, which intersperses throughout the development, production and sales of product. From market research to data reduction and then to the final market launch, every segment permeates computer aided design, which will develop towards to digitization, networked, virtualization, intelligent inevitably.


Author(s):  
MVA Raju Bahubalendruni ◽  
Bibhuti Bhusan Biswal

Selection of optimized assembly sequence is significantly essential to achieve cost-effective manufacturing process. This paper presents a novel efficient methodology to generate cost-effective feasible robotic assembly sequences though concatenation of parts. Part concatenation process will be followed with liaison predicate test and feasibility predicate test. A unique method called bounding box method is described to test the feasibility predicate efficiently in the computer-aided design environment. Assembly indexing technique is proposed to filter the redundant assembly subsets with high energy in order to minimize the computational time. The cost of collision free assembling operation is considered by the weight and distance traveled by the part in the assembly environment to join with the mating part. The method is successful in finding feasible optimal assembly sequence without ignoring any possible assembly sequence and found to be efficient in solving computer-aided assembly sequence generation. The correctness of the methodology is illustrated with an example.


2005 ◽  
Vol 5 (4) ◽  
pp. 381-387 ◽  
Author(s):  
Zahed Siddique ◽  
Karunakar Boddu

In order to provide products that can be tailored to the need of the customer, it is necessary to integrate the customer into the design process. In this paper we present a mass customization computer-aided design (CAD) framework that helps to integrate the customer into the design of user-configurable products. A template approach, which considers both modularity and scaling, is utilized to concisely represent a CAD model of the entire family. The system accepts user selections and parameters to automatically create a CAD model of the customized product in real time and then shows the model to the user. The system is implemented using PRO/ENGINEER and demonstrated through customization of bicycle frames.


Sign in / Sign up

Export Citation Format

Share Document