A Survey of Research and Application of Engine Vibration Control System Actuators

2013 ◽  
Vol 341-342 ◽  
pp. 1053-1057
Author(s):  
Guo Chun Sun ◽  
Hui Guo ◽  
Jin Si

Because the passive mount could not meet the requirements of vibration isolation and noise reduction for vehicle, the semi active mount and active mount were considered as the developing trend of reducing vibration and noise. An active vibration control system consists of a sensor and an actuator together with a control unit. The development of the systems is often limited by the chosen actuator technology. This article list the common engine vibration control system actuator, analyzing their respective performance summed up their role in the control of vibration and trends.

2011 ◽  
Vol 211-212 ◽  
pp. 1061-1065
Author(s):  
Qiang Hong Zeng ◽  
Shi Jian Zhu ◽  
Jing Jun Lou ◽  
Shui Qing Xie

The active vibration control system are described in this paper, and the controller was designed for the active control system, the controller is based on ARM Cortex M3 microcontroller core, ICP series acceleration sensor is use for signal acquisition module, the A / D converter module was designed based on ADS1158 chip, the D/ A converter module was designed based on DAC8564 chip. The controller has the characteristics of high speed and versatility.


1990 ◽  
Vol 112 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Hong Su ◽  
S. Rakheja ◽  
T. S. Sankar

Vibration-isolation characteristics of an active vibration control system incorporating an electromagnetic force generator (actuator) are investigated. The electromagnetic force generator is modeled as a first-order dynamical system and the influence of dynamics of the force generator on the vibration-isolation performance of the active isolator is investigated via computer simulation. It is concluded that the dynamics of the force generator affect the vibration-isolation performance significantly. An active control scheme, based upon absolute position, velocity, and relative position response variables, is proposed and investigated. In view of the adverse effects of generator dynamics, the proposed control scheme yields superior vibration isolation performance. Stability analysis of the active vibration control system is carried out to determine the limiting values of various feedback control gains.


2021 ◽  
Vol 11 (8) ◽  
pp. 3338
Author(s):  
Feng Li ◽  
Shujin Yuan ◽  
Fanfan Qian ◽  
Zhizheng Wu ◽  
Huayan Pu ◽  
...  

With the improvement of the performance of optical equipment carried by on-orbit spacecraft, the requirements of vibration isolation are increasing. Passive isolation platforms are widely used, but the ability to suppress the low-frequency deterministic vibration disturbance is limited, especially near the system’s natural frequency. Therefore, an active vibration control strategy is proposed to improve passive isolation performance. In this paper, a Youla parameterized adaptive active vibration control system is introduced to improve the isolation performance of a piezo-actuated active–passive isolation structure. A linear quadratic Gaussian (LQG) central controller is first designed to shape the band-limited local loop of the closed-loop system. Then, the central controller is augmented into a Youla parameterized adaptive regulator with the recursive least square adaptive algorithm, and the Youla parameters (Q parameters) can be adjusted online to the desired value to suppress the unknown and time-varying multifrequency deterministic vibration disturbance. In the experiment, the residual vibration with respect to the combination of multiple frequencies is effectively suppressed by more than 20 dB on average, and a quick response time of less than 0.3 s is achieved when the deterministic residual vibration changes suddenly over time. The experimental results illustrate that the proposed adaptive active vibration control system can effectively suppress the low-frequency deterministic residual vibration.


2021 ◽  
Author(s):  
Yong Xia

Vibration control strategies strive to reduce the effect of harmful vibrations such as machining chatter. In general, these strategies are classified as passive or active. While passive vibration control techniques are generally less complex, there is a limit to their effectiveness. Active vibration control strategies, which work by providing an additional energy supply to vibration systems, on the other hand, require more complex algorithms but can be very effective. In this work, a novel artificial neural network-based active vibration control system has been developed. The developed system can detect the sinusoidal vibration component with the highest power and suppress it in one control cycle, and in subsequent cycles, sinusoidal signals with the next highest power will be suppressed. With artificial neural networks trained to cover enough frequency and amplitude ranges, most of the original vibration can be suppressed. The efficiency of the proposed methodology has been verified experimentally in the vibration control of a cantilever beam. Artificial neural networks can be trained automatically for updated time delays in the system when necessary. Experimental results show that the developed active vibration control system is real time, adaptable, robust, effective and easy to be implemented. Finally, an experimental setup of chatter suppression for a lathe has been successfully implemented, and the successful techniques used in the previous artificial neural network-based active vibration control system have been utilized for active chatter suppression in turning.


1998 ◽  
Vol 20 (3) ◽  
pp. 176-183 ◽  
Author(s):  
Hiroto Higashiyama ◽  
Masaaki Yamada ◽  
Yukihiko Kazao ◽  
Masao Namiki

Sign in / Sign up

Export Citation Format

Share Document