scholarly journals Adaptive Deterministic Vibration Control of a Piezo-Actuated Active–Passive Isolation Structure

2021 ◽  
Vol 11 (8) ◽  
pp. 3338
Author(s):  
Feng Li ◽  
Shujin Yuan ◽  
Fanfan Qian ◽  
Zhizheng Wu ◽  
Huayan Pu ◽  
...  

With the improvement of the performance of optical equipment carried by on-orbit spacecraft, the requirements of vibration isolation are increasing. Passive isolation platforms are widely used, but the ability to suppress the low-frequency deterministic vibration disturbance is limited, especially near the system’s natural frequency. Therefore, an active vibration control strategy is proposed to improve passive isolation performance. In this paper, a Youla parameterized adaptive active vibration control system is introduced to improve the isolation performance of a piezo-actuated active–passive isolation structure. A linear quadratic Gaussian (LQG) central controller is first designed to shape the band-limited local loop of the closed-loop system. Then, the central controller is augmented into a Youla parameterized adaptive regulator with the recursive least square adaptive algorithm, and the Youla parameters (Q parameters) can be adjusted online to the desired value to suppress the unknown and time-varying multifrequency deterministic vibration disturbance. In the experiment, the residual vibration with respect to the combination of multiple frequencies is effectively suppressed by more than 20 dB on average, and a quick response time of less than 0.3 s is achieved when the deterministic residual vibration changes suddenly over time. The experimental results illustrate that the proposed adaptive active vibration control system can effectively suppress the low-frequency deterministic residual vibration.

1990 ◽  
Vol 112 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Hong Su ◽  
S. Rakheja ◽  
T. S. Sankar

Vibration-isolation characteristics of an active vibration control system incorporating an electromagnetic force generator (actuator) are investigated. The electromagnetic force generator is modeled as a first-order dynamical system and the influence of dynamics of the force generator on the vibration-isolation performance of the active isolator is investigated via computer simulation. It is concluded that the dynamics of the force generator affect the vibration-isolation performance significantly. An active control scheme, based upon absolute position, velocity, and relative position response variables, is proposed and investigated. In view of the adverse effects of generator dynamics, the proposed control scheme yields superior vibration isolation performance. Stability analysis of the active vibration control system is carried out to determine the limiting values of various feedback control gains.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yi Yu ◽  
Xing Shen ◽  
Yun Huang

In wind tunnel tests, the cantilever sting is usually used to support aircraft models because of its simple structure and low aerodynamic interference. However, in some special conditions, big-amplitude and low-frequency vibration would occur easily on the model not only in the pitch direction but also in the yaw direction, resulting in inaccurate data and even damage of the supporting structure. In this paper, aiming at suppressing the vibration in pitch and yaw plane, a multidimensional system identification and active vibration control system on the basis of piezoelectric actuators is established. A vibration monitoring method based on the strain-displacement transformation (SDT) matrix is proposed, which can transform strain signals into vibration displacements. The system identification based on chirp-Z transform (CZT) is applied to improve the adaptability and precision of the building process for the system model. After that, the hardware platform as well as the software control system based on the classical proportional-derivative (PD) algorithm is built. A series of experiments are carried out, and the results show the exactness of the vibration monitoring method. The system identification process is completed, and the controller is designed. Vibration control experiments verify the effectiveness of the controller, and the results indicate that vibrations in pitch and yaw directions are attenuated apparently. The spectrum power is reduced over 14.8 dB/Hz, which prove that the multidimensional identification and active vibration control system has the capability to decline vibration from different directions.


Author(s):  
Kimihiko Nakano ◽  
Yoshihiro Suda ◽  
Shigeyuki Nakadai

Abstract Active vibration control using regenerated vibration energy, i.e., self-powered active control, is proposed. In the self-powered active control system, vibration energy is regenerated by an electric generator, which is called an energy regenerative damper, and is stored in the condenser. An actuator achieves active vibration control using the energy stored in the condenser. The variable-value resistance whose value can be controlled by a computer is utilized to control output force of the actuator. The authors examine the performance of the self-powered active vibration control on experiments and propose to apply this system to cab suspensions of a heavy duty truck. Through experiments, it is shown that the self-powered active vibration control system has better isolation performance than a semi-active and a passive control system. Numerical simulations demonstrate better isolation performance of the self-powered active vibration control in cab suspensions of a heavy duty truck.


2013 ◽  
Vol 482 ◽  
pp. 195-199 ◽  
Author(s):  
Shu Qing Li ◽  
Liang Liang Wang ◽  
Zhi Fei Tao

Whether in the aerospace, or seismic exploration, as well as high precision operation of all trades and professions, low-frequency interference directly influences the instrument monitoring and detection precision, resulting in insufficient accuracy of the implementing agencies. The passive vibration isolation method was used by most high accuracy equipment at present, the efficiency of isolation can only achieve 60%-70%, that will have influence to the extremely precision equipment certainly. In this paper an active vibration control system was realized by using single-chip microcomputer and the PID control algorithm. System simulation model was built and experimental tests had been conducted. The interference eliminated more than 80% for 3Hz and below,can effectively improve the precision equipment to work under the low frequency interference.The system provided an effective method to suppress the low frequency interference.


2011 ◽  
Vol 211-212 ◽  
pp. 1061-1065
Author(s):  
Qiang Hong Zeng ◽  
Shi Jian Zhu ◽  
Jing Jun Lou ◽  
Shui Qing Xie

The active vibration control system are described in this paper, and the controller was designed for the active control system, the controller is based on ARM Cortex M3 microcontroller core, ICP series acceleration sensor is use for signal acquisition module, the A / D converter module was designed based on ADS1158 chip, the D/ A converter module was designed based on DAC8564 chip. The controller has the characteristics of high speed and versatility.


1999 ◽  
Author(s):  
Maxime P. Bayon de Noyer ◽  
Patrick J. Roberts ◽  
Sathya V. Hanagud

Abstract In most structures, fatigue critical areas are associated with regions of high stresses. Passive stiffening of structures usually displaces these high stress regions. Thus, for most applications, active vibration control is preferred. However, the question of whether an active vibration control scheme involving a set of actuators will reduce stresses in the whole structure or create high stress areas in the vicinity of the actuators arises. In this paper, the stresses induced by an active vibration control system based on the use of an offset piezoceramic stack actuator with acceleration feedback control are investigated. Using a modal analysis of the actuator acting on a cantilever beam, a low frequency approximation of the actuator is developed in the form of a spring and two driving forces. Based on this approximation, a 3-D finite element simulation of the closed loop active vibration control system is developed and the closed loop stresses are studied.


2013 ◽  
Vol 341-342 ◽  
pp. 1053-1057
Author(s):  
Guo Chun Sun ◽  
Hui Guo ◽  
Jin Si

Because the passive mount could not meet the requirements of vibration isolation and noise reduction for vehicle, the semi active mount and active mount were considered as the developing trend of reducing vibration and noise. An active vibration control system consists of a sensor and an actuator together with a control unit. The development of the systems is often limited by the chosen actuator technology. This article list the common engine vibration control system actuator, analyzing their respective performance summed up their role in the control of vibration and trends.


Sign in / Sign up

Export Citation Format

Share Document