The Study of Drive-Train System of Wind Turbines with DFIG

2013 ◽  
Vol 347-350 ◽  
pp. 1953-1956
Author(s):  
Zhen Xie ◽  
Gao Fei Lv ◽  
Fei Teng

In this paper, we focus on modeling, oscillatory stability analysis of the drive train system and the transient performances of wind turbine with doubly fed induction generator (DFIG) wind turbines, which are evaluated under sub-synchronous operation during the grid voltage fault. Results have shown that the oscillatory stability and shafting parameters have a close relationship, it is necessary to consider the drive train system while the transient performances of DFIG wind turbines are analyzed.

2012 ◽  
Vol 512-515 ◽  
pp. 782-787
Author(s):  
Jia Jun Zhai ◽  
Bu Han Zhang ◽  
Kui Wang ◽  
Wen Shao ◽  
Cheng Xiong Mao

Doubly fed induction generator (DFIG) is now becoming one of most widely used wind turbines in global market for wind power generation, due to its outstanding advantages. However, the DFIG is sensitive to grid faults. The DFIG will have to be removed from the grid if there’s no protection appliance in it. Therefore, the crowbar protection is widely used in the world for improving the low voltage ride-through ability of wind turbines. This paper analysed the operating characteristics and short-circuit current of DFIG under symmetrical short-circuit fault with respect to different sags to grid voltage, which on the basis of DFIG wind turbine with crowbar protection. And the expressions of short-circuit current under symmetrical short-circuit fault for DFIG were derived. The effectiveness of the expression was simulated in PSCAD/EMTDC.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
J. S. Sathiyanarayanan ◽  
A. Senthil Kumar

Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.


2015 ◽  
Vol 74 ◽  
pp. 886-899 ◽  
Author(s):  
Khouloud Bedoud ◽  
Mahieddine Ali-rachedi ◽  
Tahar Bahi ◽  
Rabah Lakel ◽  
Azzeddine Grid

Author(s):  
Sayyed Ali Akbar Shahriari

Purpose This paper aims to propose an 18th-order nonlinear model for doubly fed induction generator (DFIG) wind turbines. Based on the proposed model, which is more complete than the models previously developed, an extended Kalman filter (EKF) is used to estimate the DFIG state variables. Design/methodology/approach State estimation is a popular approach in power system control and monitoring because of minimizing measurement noise level and obtaining non-measured state variables. To estimate all state variables of DFIG wind turbine, it is necessary to develop a model that considers all state variables. So, an 18th-order nonlinear model is proposed for DFIG wind turbines. EKF is used to estimate the DFIG state variables based on the proposed model. Findings An 18th-order nonlinear model is proposed for DFIG wind turbines. Furthermore, based on the proposed model, its state variables are estimated. Simulation studies are done in four cases to verify the ability of the proposed model in the estimation of state variables under noisy, wind speed variation and fault condition. The results demonstrate priority of the proposed model in the estimation of DFIG state variables. Originality/value Evaluating DFIG model to estimate its state variables precisely.


2020 ◽  
Vol 166 ◽  
pp. 04006
Author(s):  
Andrey Uskov ◽  
Vadym Shchokin ◽  
Oleksii Mykhailenko ◽  
Oleksii Kryvenko

The article is devoted to the improvement of control systems for wind turbines by developing fuzzy controllers with higher transient characteristics and low computational costs of identification in comparison with the applied PI controllers. Based on the self-organization method, a fuzzy speed controller of the doubly-fed induction generator (DFIG) of a wind turbine was synthesized, which uses a zero-order Sugeno fuzzy inference system and is made in the form of a block-oriented Wiener model. This regulator is an element of the vector control system of the transistor converter on the rotor side. The results of simulation modeling of the fuzzy controller showed that it provides a lower transition time compared to the PI controller, by 53.59% during acceleration and by 79.76% during braking, and 23.81% less error speed deviations from the reference signal. Such indicators can minimize losses while maintaining the maximum output power point of the power plant. The implementation of the developed system on wind turbines contributes to increasing the efficiency of wind farms, reducing the cost of electricity production, reducing the payback period of equipment, and the sustainable development of alternative energy in general.


Author(s):  
Sumer Chand Prasad

Doubly-fed induction generator wind turbines are largely developed due to their variable speed feature. The response of wind turbines to grid disturbance is an important issue, especially since the rated power of the wind turbine is increased; therefore, it is important to study the effect of grid disturbances on the wind turbine. In the chapter, the characteristics of the doubly-fed induction generator during wind speed fluctuation are studied. MATLAB/Simulink software has been used to observe the characteristics of wind turbines during wind speed fluctuation. Simulation results of the doubly-fed induction generator wind turbine system show improved system stability during wind speed variation. Power electronics converters used in the DFIG system are the most sensitive parts of the variable speed wind turbines with regards to system disturbances. To protect from excessive current, the DFIG system is equipped with an over-current and DC voltage overload protection system that trips the system under abnormal conditions.


2017 ◽  
Vol 10 (1) ◽  
pp. 56 ◽  
Author(s):  
Zakaria Sabiri ◽  
Nadia Machkour ◽  
Nabila Rabbah ◽  
Mohammed Nahid ◽  
Elm'kaddem Kheddioui

Sign in / Sign up

Export Citation Format

Share Document