Discussion about Gold Ores Mineralization of Collision-Type Orogeny in the East of Shandong

2013 ◽  
Vol 353-356 ◽  
pp. 1249-1262
Author(s):  
Hong Kui Li ◽  
Yi Fan Li ◽  
Lu Yi Li ◽  
Chuan Yuan Zhuo ◽  
Ke Geng ◽  
...  

The mineralization of collision orogeny is an important part of continental dynamics. For the process of continental dynamics of Shandong, adoption of tectonic facies mapping is main carrier and specific expression form to these researches such as divergence of continental mass, convergence, collision and orogeny. Shandong tectonic facies mapping of 1:500000 scale worked out by author shows that there are two very important events of collision orogeny in Mesozoic this areaIndochina and Yanshan collision orogeny. The Indochina orogeny is mainly characterized as subduction from Yangtze to North China Plates, based on which Sulu high-ultra high pressure zone of metamorphism, syn-orogenic granite and post-orogenic high alkali sinaite are formed. Continental dynamics environment of the Yanshan orogeny derives from transformation from Central Asia-Tethys tectonic domain to marginal-Pacific tectonic domain and subduction of Pacific plates, and it appears as three orogenys and three stretching in the east of Shandong. Magmatic rocks of orogeny related with gold ores can be divided into four combinations as follows: Linglong gneissic granite of the early orogenic period (J3), Guojialing granodiorite-granite of the middle orogenic period (K1), Weideshan diorite-granodiorite-granite of the late orogenic period (K1) and A-type Laoshan geode parlkaline alkali granitesyenogranite of the post orogenic period. For combination of Guojialing granodiorite-granite of the middle orogenic period, SHRIMP U-Pb ages concentrate in 130~126Ma, which are closely related with emplacement of gold ores, and formed ages of gold ores this area concentrate in 115~120Ma, which basically stand for the age of main mineralization period. Polymetallic ores are related with combination of Weideshan diorite-granodiorite-granite of the late orogenic period, and it was also the superimposed mineralization period in the east of Shandong. Tectonics-magma activities and gold ores mineralization are controlled by interaction of three tectonic domains that are tethys, Paleo-Asian Ocean and Pacific. Dynamics background of gold ores this area is transition of tectonic system and lithospheric thinning in Mesozoic, which is related with collision of North China and Yangtze Plates and subduction of Pacific Plates.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Quanlin Hou ◽  
Qing Liu ◽  
Hongyuan Zhang ◽  
Xiaohui Zhang ◽  
Jun Li

Mesozoic tectonic events in different areas of the eastern North China Block (NCB) show consistency in tectonic time and genesis. The Triassic collision between NCB and Yangtze results in the nearly S-N strong compression in the Dabie, Jiaodong, and west Shandong areas in Middle Triassic-Middle Jurassic. Compression in the Yanshan area in the north part of NCB was mainly affected by the collision between Mongolia Block and NCB, as well as Siberia Block and North China-Mongolia Block in Late Triassic-Late Jurassic. However, in the eastern NCB, compressive tectonic system in Early Mesozoic was inversed into extensional tectonic system in Late Mesozoic. The extension in Late Mesozoic at upper crust mainly exhibits as extensional detachment faults and metamorphic core complex (MCC). The deformation age of extensional detachment faults is peaking at 120–110 Ma in Yanshan area and at 130–110 Ma in the Dabie area. In the Jiaodong area eastern to the Tan-Lu faults, the compression thrust had been continuing to Late Mesozoic at least in upper crust related to the sinistral strike slipping of the Tan-Lu fault zone.The extensional detachments in the eastern NCB would be caused by strong crust-mantle action with upwelling mantle in Late Mesozoic.


2013 ◽  
Vol 352 ◽  
pp. 108-124 ◽  
Author(s):  
Yusheng Wan ◽  
Yuhai Zhang ◽  
Ian S. Williams ◽  
Dunyi Liu ◽  
Chunyan Dong ◽  
...  

2019 ◽  
Vol 156 (12) ◽  
pp. 2104-2112
Author(s):  
Jie Yang ◽  
Qiang Zhu ◽  
Zuoxun Zeng ◽  
Le Wan

AbstractThe periodic dispersal and assembly of continental fragments has been an inherent feature of the continental crust. Based on the discovery of large-scale supercontinent cycle and the theory of plate tectonics, several supercontinents have been identified, such as Columbia/Nuna, Rodinia, Gondwana and Pangaea. Neoproterozoic magmatic events related to the break-up of Rodinia are globally well preserved. Although Neoproterozoic magmatic events were very weak in the North China Craton (NCC), they are crucial in reconstructing the geometries of the NCC and could facilitate the completion of the Neoproterozoic configuration of the supercontinent. In this study, c. 853–835 Ma magmatic rocks are identified in the western margin of the NCC. Precise zircon U–Pb age determination yields 206Pb/238U average ages of 835.5 ± 5.3 Ma (HL-39) and 853.7 ± 4.5 Ma (HL-30). In situ zircon Hf isotope compositions of the samples reveal that their parental magma was formed by the reworking of ancient crust evolved from Mesoproterozoic mantle. In summary, the discovery of Neoproterozoic magmatic rocks in the western margin of the NCC, and reported synchronous rocks in other parts of the NCC indicate that the NCC might be conjoined with the supercontinent Rodinia during the Neoproterozoic. This discovery is of significant help in unravelling the early Neoproterozoic history of the NCC and the evolution of the supercontinent Rodinia.


Author(s):  
K.L. Youlton ◽  
J.A. Kinnaird ◽  
B.J. Youlton

SYNOPSIS Methods for treating and processing refractory gold ores are well established. However, what is less well understood is how the formation of the gold-bearing deposits affects gold processing and extraction. In order to evaluate the effect of ore genesis on gold extraction a number of South African gold deposits were studied. These included complex Pilgrim's Rest samples as well as refractory Fairview, Barbrook, and Consolidated Murchison samples. We found the refractory nature of gold ores is controlled by a limited number of well-understood mineralogical factors. Solid solution gold is linked to low temperature and pressure conditions in fine-grained sedimentary lithologies, while reactive pyrrhotite can form from hydrothermal fluids associated with mafic magmatic rocks. These formational controls can be used to identify and avoid complex deposits at a desktop study phase, or address and reduce complications further along the pipeline using early mineralogical studies. Keywords: gold processing, refractory gold, ore mineralogy.


Sign in / Sign up

Export Citation Format

Share Document