Research of an Slope under Rainfall and Deep Excavation Condition with UDEC

2013 ◽  
Vol 353-356 ◽  
pp. 756-760 ◽  
Author(s):  
Li Xuan Ren ◽  
Ning Kai

The landslides often due to the rainfall and the excavation inside. Although both of them could influenced the stability of the slope, in the different combination of the condition of rainfall and excavation. The results would make a big difference from condition. The analysis results of Finite Element Method have a large difference with the actual situation, especially in the large deformation and landslide. Therefore, we use the Distinct Element Method to simulate and analysis the collapse of Zengziya in Chongqing. We collect different parameters to simulate the changed conditions of the combination of rainfall, half excavation and whole excavation. Then we will get the data of displacement of the rock and the stress redistribution of the slope. By the analysis of the those data, and the comparison from the field situation, we will draw a conclusion that the main factors of the landslides is the rainfall, and the excavation sometimes can simulate the landslides. At last, our research results can make some help of the practical engineering.

2016 ◽  
Vol 857 ◽  
pp. 555-559 ◽  
Author(s):  
Zuhayr Md Ghazaly ◽  
Mustaqqim Abdul Rahim ◽  
Kok Alfred Chee Jee ◽  
Nur Fitriah Isa ◽  
Liyana Ahmad Sofri

Slope stability analysis is one of the ancient tasks in the geotechnical engineering. There are two major methods; limit equilibrium method (LEM) and finite element method (FEM) that were used to analyze the factor of safety (FOS) to determine the stability of slope. The factor of safety will affect the remediation method to be underdesign or overdesign if the analysis method was not well chosen. This can lead to safety and costing problems which are the main concern. Furthermore, there were no statement that issued one of the analysis methods was more preferred than another. To achieve the objective of this research, the soil sample collected from landslide at Wang Kelian were tested to obtain the parameters of the soils. Then, those results were inserted into Plaxis and Slope/W software for modeling to obtain the factor of safety based on different cases such as geometry and homogenous of slope. The FOS obtained by FEM was generally lower compared to LEM but LEM can provide an obvious critical slip surface. This can be explained by their principles. Overall, the analysis method chosen must be based on the purpose of the analysis.


2019 ◽  
Vol 17 (02) ◽  
pp. 1845002 ◽  
Author(s):  
J. F. Zhang ◽  
R. P. Niu ◽  
Y. F. Zhang ◽  
C. Q. Wang ◽  
M. Li ◽  
...  

Smoothed finite element method (S-FEM) is a new general numerical method which has been applied to solve various practical engineering problems. It combines standard finite element method (FEM) and meshfree techniques based on the weaken-weak (W2) formulation. This project, for the first time, develops a preprocessor software package SFEM-Pre for creating types of two-dimensional (2D) and three-dimensional (3D) S-FEM models following strictly the S-FEM theory. Because the software architecture of our 3D processor is the same as our 2D preprocessor, we will mainly introduce the 2D preprocessor in terms of software design for easier description, but the examples will include both 2D and 3D cases to fully demonstrate and validate the whole preprocessor of S-FEM. Our 2D preprocessor package is equipped with a graphical user interface (GUI) for easy use, and with a connectivity database for efficient computation. Schemes are developed for not only automatically meshes the problem domains using our GUI, but also accepts various geometry files made available from some existing commercial software packages, such as ABAQUS®and HyperMesh®. In order to improve the efficiency of our preprocessor, a parallel triangulation mesh generator has also been developed based on the advancing front technique (AFT) to create triangular meshes for complex geometry, and at the same time to create six types of connectivity needed for various S-FEM models. In addition, a database is implemented in our code to record all these connectivity to avoid duplicated calculation. Finally, intensive numerical experiments are conducted to validate the efficiency, accuracy and stability of our preprocessor codes. It is shown that with our preprocessor, an S-FEM can be created automatically without much human intervention for geometry of arbitrary complexity.


2010 ◽  
Vol 07 (01) ◽  
pp. 1-32 ◽  
Author(s):  
GUOWEI MA ◽  
XINMEI AN ◽  
LEI HE

This paper presents a review on the numerical manifold method (NMM), which covers the basic theories of the NMM, such as NMM components, NMM displacement approximation, formulations of the discrete system of equations, integration scheme, imposition of the boundary conditions, treatment of contact problems involved in the NMM, and also the recent developments and applications of the NMM. Modeling the strong discontinuities within the framework of the NMM is specially emphasized. Several examples demonstrating the capability of the NMM in modeling discrete block system, strong discontinuities, as well as weak discontinuities are given. The similarities and distinctions of the NMM with various other numerical methods such as the finite element method (FEM), the extended finite element method (XFEM), the generalized finite element method (GFEM), the discontinuous deformation analysis (DDA), and the distinct element method (DEM) are investigated. Further developments on the NMM are suggested.


2011 ◽  
Vol 287-290 ◽  
pp. 717-722 ◽  
Author(s):  
Zhen Ting Wu ◽  
Shun Jiang Li

In order to increase the designing precision and study the main factors influencing the stability of metal elastic-jumping membrane, a set of experimental equipments have been designed to test the stability of metal elastic-jumping membrane. The laws of influencing the stability of elastic-jumping membrane were studies by changing the thickness, high, radius etc structure parameter. It shows that the increasing of high and thickness can enhance the distortion rigidity of metal elastic-jumping membrane, result in the increase of critical load at losing stability; the increasing of diameter can reduce the distortion rigidity of metal elastic-jumping membrane, result in the decrease of critical load at losing stability. At the same time, the correctness of finite element model was confirmed, and the basis was established for finite element method applying in optimizing design of metal elastic-jumping membrane.


1969 ◽  
Vol 4 (3) ◽  
pp. 163-168
Author(s):  
H Stordahl ◽  
H Christensen

The finite-element method (1) (2)∗ is increasingly used in the stress analysis of mechanical-engineering problems. It is the purpose of this paper to described how the finite-element method can be used as an effective tool in the design of rotors. Up to the present time this method has mainly been used in the analysis of two-dimensional problems. However, a special class of three-dimensional problems, namely axi-symmetric rotors, can be treated as a nearly two-dimensional problem. This paper summarizes the development of the finite-element method as applied to the analysis of the axi-symmetric rotor. A computer programme is then briefly described, and the application of the method to the solution of three examples taken from practical engineering experience are presented.


2011 ◽  
Vol 368-373 ◽  
pp. 234-240
Author(s):  
Shu Li Wang ◽  
Man Gen Mu ◽  
Ran Wang ◽  
Wen Bo Cui

This paper presents the results of a study on a joint slope deformation affecting the western slope of the GuangYang highway (YangQuan, China). Fieldwork identified the ongoing deformational process and assisted in defining its mechanisms, evolution and controlling factors. Here we discuss how to use limit equilibrium methods to calculate the behavior of slopes and to use the finite element analysis to evaluate the stability, displacements of slopes and soil-slope stabilization interaction. The finite element method with shear strength reduction (SSR) technique is explained in Phase2D. This method is effective for the prediction of the stability of slope. Based on numerical comparisons between the limit equilibrium methods and finite element method, it is suggested that the finite element method with SSR technique is a reliable and maybe unique approach to evaluate the slope stability. The paper also took into account effectiveness of the large rain and seismic load. The results of the numerical analysis are consistent with the observed slope surface evidence.


Author(s):  
Milan Novotný ◽  
Radek Neugebauer ◽  
Milan Šimek

The objective of the paper is a static analysis of a desk construction and the determination of its probable mechanical behaviour using Finite Element Method. The construction was modelled and numerically analysed in Autocad Inventor 2011 and the stability of the entire desk was calculated with the size and placement of the loading force based on the standards and cited literature. Possible locations and directions of the deformation were analysed and a solution for its prevention was proposed and the stability of the desk as well as the extreme position of the stand were calculated. The verification of the obtained results in an accredited furniture testing lab is planned using a prototype of the office desk.


Sign in / Sign up

Export Citation Format

Share Document