Wettability of Carbon Nanotubes with Molten Sn-Ag-Cu Solder Alloy

2013 ◽  
Vol 372 ◽  
pp. 136-142 ◽  
Author(s):  
Suchart Chantaramanee ◽  
Sirikul Wisutmethangoon ◽  
Lek Sikong ◽  
Thawatchai Plookphol

The purpose of this work was to study the wettability of single-walled carbon nanotube (SWCNTs) and molten 96.5Sn-3.0Ag-0.5Cu (SAC305) lead-free solder alloy. The SWCNTs was coated with silver (Ag) by using an electroless plating method in order to enhance its wettability. The wetting behavior of molten SAC305 alloy on three different substrates, alumina, un-coated SWCNTs and Ag-coated SWCNTs was investigated by employing a modified sessile drop technique. The wetting angle between the molten SAC305 and the three substrates was measured at temperature range of 250-550 °C. The average wetting angles between the molten SAC305 and the alumina, the un-coated SWCNTs and the Ag-coated SWCNTs substrates were 130.7±1.3°, 128.4±4.2° and 120.1±3.5°, respectively. The wettabilty of the SWCNTs was improved by coating it with silver. The wetting angle of the Ag-coated SWCNTs was decreased approx. 9° compared to that of the un-coated. Increasing temperature has slightly affected on the wettability of SWCNTs and the molten SAC305.

2019 ◽  
Vol 32 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Ahmet Mustafa Erer ◽  
Serkan Oguz

Purpose This paper aims to invastigate of the wetting and interfacial properties of Sn-(3-x)Ag-0.5Cu-(x)Bi (x = 0.5, 1 and 2 in Wt.%) Pb-free solder alloys at various temperatures ( 250, 280 and 310°C) on Cu substrate in Ar atmosphere. Design/methodology/approach In this study, new Sn-(3-x)Ag-0.5Cu-xBi systems, low Ag content quaternary lead-free solder alloys, were produced by adding 0.5, 1 and 2% Bi to the near-eutectic SAC305 alloy. The wetting angles of three new alloys, Sn-2.5Ag-0.5Cu-0.5 Bi(SAC-0.5 Bi), Sn-2Ag-0.5Cu-1Bi(SAC-1Bi) and Sn-1Ag-0.5Cu-2Bi(SAC-2Bi) were measured by sessile drop technique on the Cu substrate in argon atmosphere. Findings In accordance with the interfacial analyses, intermetallic compounds of Cu3Sn, Cu6Sn5, and Ag3Sn were detected at the SAC-Bi/Cu interface. The results of wetting tests show that the addition of 1 Wt.% Bi improves the wetting properties of the Sn-3Ag-0.5Cu solder. The lowest wetting angle (θ) was obtained as 35,34° for Sn-2Ag-0.5Cu-1Bi alloy at a temperature of 310 °C. Originality/value This work was carried out with our handmade experiment set and the production of the quaternary lead-free solder alloy used in wetting tests belongs to us. Experiments were conducted using the sessile drop method in accordance with wetting tests.


2003 ◽  
Vol 17 (04n06) ◽  
pp. 960-965
Author(s):  
G. A. COSTA ◽  
P. MELE ◽  
A. LIONELLO ◽  
L. MORBELLI

The sessile drop technique was used to study the wettability behaviour of silver on sintered YBCO substrates. The temporal evolution of wetting angle at a temperature of 980°C is reported. SEM/EDS analysis on both surface and sectian of YBCO/Ag samples was performed: silver collects in particles, filling substrate pores in a layer of 200 microns under the silver drop. In this superficial region silver also induces partial melting of YBCO at a temperature highly lower than usual. The nature of this phenomenon is explained.


2021 ◽  
Author(s):  
M. N. Ervina Efzan ◽  
M. M. Nur Haslinda ◽  
M. M. Al Bakri Abdullah

2003 ◽  
Vol 34 (2) ◽  
pp. 193-199 ◽  
Author(s):  
E. Kapilashrami ◽  
A. Jakobsson ◽  
S. Seetharaman ◽  
A. K. Lahiri

2020 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi

Abstract The Sn-3.0Ag-0.5Cu solder alloy is a prominent candidate for the Pb-free solder, and SAC305 solder is generally employed in today’s electronic enterprise. In this study, the formation of intermetallic compounds (Cu6Sn5 and Ag3Sn) at the interface, average neighbour’s particle distance, and the morphological mosaic are examined by the addition of SiC and nickel-coated silicon carbide reinforcements within Sn-3.0Ag-0.5Cu solder. Results revealed that the addition of SiC and SiC(Ni) particles are associated with a small change to the average neighbor’s particle distance and a decrease of clustering rate to a certain limit of the Sn-3.0Ag-0.5Cu solder composites. Moreover, the development of the Cu6Sn5 and the structure of the Ag3Sn are improved with the addition of SiC and Ni coated SiC.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Joaquin Aguilar-Santillan

The effects ofBaSO4additions on the wetting of alumina by molten aluminum were studied by the sessile drop technique. To study the effect ofBaSO4decomposition(1100–1150∘C), the additions were treated at two temperatures700∘C(973 K) and1450∘C(1723 K), respectively.BaSO4additions at low and high temperatures did not improve the nonwetting character of these compositions. However, at higher firing temperature, the formation ofBA6 (BaO•6Al2O3)has a nonwetting trend with increasing its content. To address theBA6specifically a pureBaO•6Al2O3was produced and tested. It was more nonwetting than the pure alumina. After the analysis of the contact angles for theBaSO4and theBA6 (BaO•6Al2O3), it was concluded that these additions to alumina do not inhibit wetting by molten aluminum. In fact, at the addition levels common for refractories, the wetting tendency of molten aluminum is enhanced. Alternative explanations for the effectiveness ofBaSO4additions to alumina refractories are discussed.


2020 ◽  
Vol 43 (12) ◽  
pp. 2883-2891
Author(s):  
Q.B. Tao ◽  
L. Benabou ◽  
Van Nhat Le ◽  
Ngoc Anh Thi Nguyen ◽  
Hung Nguyen‐Xuan

Sign in / Sign up

Export Citation Format

Share Document