sac305 solder
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 80)

H-INDEX

10
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7909
Author(s):  
Karel Dušek ◽  
Petr Veselý ◽  
David Bušek ◽  
Adam Petráč ◽  
Attila Géczy ◽  
...  

Flux contained in solder paste significantly affects the process of solder joint creation during reflow soldering, including the creation of an intermetallic layer (IML). This work investigates the dependence of intermetallic layer thickness on ROL0/ROL1 flux classification, glossy or matt solder mask, and OSP/HASL/ENIG soldering pad surface finish. Two original SAC305 solder pastes differing only in the used flux were chosen for the experiment. The influence of multiple reflows was also observed. The intermetallic layer thicknesses were obtained by the image analysis of micro-section images. The flux type proved to have a significant impact on the intermetallic layer thickness. The solder paste with ROL1 caused an increase in IML thickness by up to 40% in comparison to an identical paste with ROL0 flux. Furthermore, doubling the roughness of the solder mask has increased the resulting IML thickness by 37% at HASL surface finish and by an average of 22%.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7874
Author(s):  
Panwang Chi ◽  
Yesu Li ◽  
Hongfa Pan ◽  
Yibo Wang ◽  
Nancheng Chen ◽  
...  

Electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) is a common surface finish in electronic packaging, while the Ni(P) layer increases the impedance of solder joints and leads to signal quality degradation in high-frequency circuits. Reducing the thickness of the Ni(P) layer can balance the high impedance and weldability. In this paper, the interfacial reaction process between ultrathin ENEPIG substrates with different Ni layer thicknesses (0.112 and 0.185 μm) and Sn–3.0Ag–0.5Cu (SAC305) solder during reflow and aging was studied. The bonding ability and reliability of solder joints with different surface finishes were evaluated based on solder ball shear test, drop test and temperature cycle test (TCT), and the failure mechanism was analyzed from the perspective of intermetallic compound (IMC) interface growth. The results showed that the Ni–Sn–P layer generated by ultrathin ENEPIG can inhibit the growth of brittle IMC so that the solder joints maintain high shear strength. Ultrathin ENEPIG with a Ni layer thickness of 0.185 μm had no failure cracks under thermal cycling and drop impact, which can meet actual reliability standards. Therefore, ultrathin ENEPIG has broad prospects and important significance in the field of high-frequency chip substrate design and manufacturing.


2021 ◽  
Vol 105 (1) ◽  
pp. 391-400
Author(s):  
Jakub Dokoupil ◽  
Jiri Stary

This work deals with the comparison of the standard SAC305 (Sn 96.5 %; Ag 3 %; Cu 0.5 %) solder alloy with melting temperature between 217 - 220 °C and an alternative alloy REL61 (SnBiAgCu) with lower silver content and melting temperature in the range of 208 - 215 °C in terms of IMC layer growth during thermal cycling and its effect on the shear strength of the solder joints. The test PCBs were soldered using two different temperature profiles and the temperature cycling was performed under two different conditions. No negative effect of REL61 solder alloy on the growth of the IMC layer under thermal stress and on the subsequent shear strength of the solder joint was found. From this point of view, the REL61 solder alloy can be used as a replacement for the SAC305 solder alloy.


Author(s):  
Cong Liu ◽  
Daquan Xia ◽  
Mizhe Tian ◽  
Shiqi Chen ◽  
Guisheng Gan ◽  
...  

2021 ◽  
Author(s):  
Mohammad Ashraful Haq ◽  
Mohd Aminul Hoque ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract A major problem faced by electronic packaging industries is the poor reliability of lead free solder joints. One of the most common methods utilized to tackle this problem is by doping the alloy with other elements, especially bismuth. Researches have shown Bismuth doped solder joints to mostly fail near the Intermetallic (IMC) layer rather than the bulk of the solder joint as commonly observed in traditional SAC305 solder joints. An understanding of the properties of this IMC layer would thus provide better solutions on improving the reliability of bismuth doped solder joints. In this study, the authors have used three different lead free solders doped with 1%, 2% and 3% bismuth. Joints of these alloys were created on copper substrates. The joints were then polished to clearly expose the IMC layers. These joints were then aged at 125 °C for 0, 1, 2, 5 and 10 days. For each aging condition, the elastic modulus and the hardness of the IMC layers were evaluated using a nanoindenter. The IMC layer thickness and the chemical composition of the IMC layers were also determined for each alloy at every aging condition using Scanning Electron Microscopy (SEM) and EDS. The results from this study will give a better idea on how the percentage of bismuth content in lead free solder affects the IMC layer properties and the overall reliability of the solder joints.


Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract This study focuses on the feature vector identification and Remaining Useful Life (RUL) estimation of SAC305 solder alloy PCB's of two different configurations during varying conditions of temperature and vibration. The feature vectors are identified using the strain signals acquired from four symmetrical locations of the PCB at regular intervals during vibration. Two different types of experiments are employed to characterize the PCB's dynamic changes with varying temperature and acceleration levels. The strain signals acquired during each of these experiments are compared based on both time and frequency domain characteristics. Different statistical and frequency-based techniques were used to identify the strain signal variations with changes in the environment and loading conditions. The feature vectors in predicting failure at a constant working temperature and load were identified, and as an extension to this work, the effectiveness of the feature vectors during varying conditions of temperature and acceleration levels are investigated. The remaining Useful Life of the packages was estimated using a deep learning approach based on Long Short Term Memory (LSTM) network. This technique can identify the underlying patterns in multivariate time series data that can predict the packages' life. The autocorrelation function's residuals were used as the multivariate time series data in conjunction with the LSTM deep learning technique to forecast the packages' life at different varying temperatures and acceleration levels during vibration.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mardiana Said ◽  
Muhammad Firdaus Mohd Nazeri ◽  
Nurulakmal Mohd Sharif ◽  
Ahmad Azmin Mohamad

Purpose This paper aims to investigate the morphology and tensile properties of SAC305 solder alloy under the influence of microwave hybrid heating (MHH) for soldering at different microwave parameters. Design/methodology/approach Si wafer was used as susceptor in MHH for solder reflow. Microwave operating power for medium and high ranging from 40 to 140 s reflow time was used to investigate their effect on the microstructure and strength of SAC305/Cu solder joints. The morphology and elemental composition of the intermetallic compound (IMC) joint were evaluated on the top surface and cross-sectional view. Findings IMC formation transformed from scallop-like to elongated scallop-like structure for medium operating power and scallop-like to planar-like structure for high operating power when exposed to longer reflow time. Compositional and phase analysis confirmed that the observed IMCs consist of Cu6Sn5, Cu3Sn and Ag3Sn. A thinner IMC layer was formed at medium operating power, 80 s (2.4 µm), and high operating power, 40 s (2.5 µm). The ultimate tensile strength at high operating power, 40 s (45.5 MPa), was 44.9% greater than that at medium operating power, 80 s (31.4 MPa). Originality/value Microwave parameters with the influence of Si wafer in MHH in soldering have been developed and optimized. A microwave temperature profile was established to select the appropriate parameter for solder reflow. For this MHH soldering method, the higher operating power and shorter reflow time are preferable.


2021 ◽  
Author(s):  
Debabrata Mondal ◽  
Abdullah Fahim ◽  
KM Rafidh Hassan ◽  
Jeffrey Suhling ◽  
Pradeep Lall

2021 ◽  
Author(s):  
Mohammad Ashraful Haq ◽  
Mohd Aminul Hoque ◽  
Jeffrey Suhling ◽  
Pradeep Lall

Sign in / Sign up

Export Citation Format

Share Document