Particle Swarm Optimization with Crossover Operator for Global Optimization Problems

2013 ◽  
Vol 373-375 ◽  
pp. 1131-1134
Author(s):  
Wei Yi Qian ◽  
Guang Lei Liu

We propose a modified particle swarm optimization (PSO) algorithm named SPSO for the global optimization problems. In SPSO, we introduce the crossover operator in order to increase the diversity of the swarm. The crossover operator is contracted by forming a simplex. The crossover operator is used if the diversity of the swarm is below a threshold (denoted hlow) and continues until the diversity reaches the required value (hhigh). The six test problems are used for numerical study. Numerical results indicate that the proposed algorithm is better than some existing PSO.

Mekatronika ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 35-43
Author(s):  
K. M. Ang ◽  
Z. S. Yeap ◽  
C. E. Chow ◽  
W. Cheng ◽  
W. H. Lim

Different variants of particle swarm optimization (PSO) algorithms were introduced in recent years with various improvements to tackle different types of optimization problems more robustly. However, the conventional initialization scheme tends to generate an initial population with relatively inferior solution due to the random guess mechanism. In this paper, a PSO variant known as modified PSO with chaotic initialization scheme is introduced to solve unconstrained global optimization problems more effectively, by generating a more promising initial population. Experimental studies are conducted to assess and compare the optimization performance of the proposed algorithm with four existing well-establised PSO variants using seven test functions. The proposed algorithm is observed to outperform its competitors in solving the selected test problems.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Martins Akugbe Arasomwan ◽  
Aderemi Oluyinka Adewumi

Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Waqas Haider Bangyal ◽  
Abdul Hameed ◽  
Wael Alosaimi ◽  
Hashem Alyami

Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique used to search for food with the intrinsic manner of bee swarming. PSO is widely used to solve the diverse problems of optimization. Initialization of population is a critical factor in the PSO algorithm, which considerably influences the diversity and convergence during the process of PSO. Quasirandom sequences are useful for initializing the population to improve the diversity and convergence, rather than applying the random distribution for initialization. The performance of PSO is expanded in this paper to make it appropriate for the optimization problem by introducing a new initialization technique named WELL with the help of low-discrepancy sequence. To solve the optimization problems in large-dimensional search spaces, the proposed solution is termed as WE-PSO. The suggested solution has been verified on fifteen well-known unimodal and multimodal benchmark test problems extensively used in the literature, Moreover, the performance of WE-PSO is compared with the standard PSO and two other initialization approaches Sobol-based PSO (SO-PSO) and Halton-based PSO (H-PSO). The findings indicate that WE-PSO is better than the standard multimodal problem-solving techniques. The results validate the efficacy and effectiveness of our approach. In comparison, the proposed approach is used for artificial neural network (ANN) learning and contrasted to the standard backpropagation algorithm, standard PSO, H-PSO, and SO-PSO, respectively. The results of our technique has a higher accuracy score and outperforms traditional methods. Also, the outcome of our work presents an insight on how the proposed initialization technique has a high effect on the quality of cost function, integration, and diversity aspects.


2010 ◽  
Vol 1 (3) ◽  
pp. 59-79 ◽  
Author(s):  
S. Nguyen ◽  
V. Kachitvichyanukul

Particle Swarm Optimization (PSO) is one of the most effective metaheuristics algorithms, with many successful real-world applications. The reason for the success of PSO is the movement behavior, which allows the swarm to effectively explore the search space. Unfortunately, the original PSO algorithm is only suitable for single objective optimization problems. In this paper, three movement strategies are discussed for multi-objective PSO (MOPSO) and popular test problems are used to confirm their effectiveness. In addition, these algorithms are also applied to solve the engineering design and portfolio optimization problems. Results show that the algorithms are effective with both direct and indirect encoding schemes.


Author(s):  
Wenbin Liu ◽  
Nengsheng Luo ◽  
Guo Pan ◽  
Aijia Ouyang

A chaos particle swarm optimization (CPSO) algorithm based on the chaos operator (CS) is proposed for global optimization problems and parameter inversion of the nonlinear sun shadow model in our study. The CPSO algorithm combines the local search ability of CS and the global search ability of PSO algorithm. The CPSO algorithm can not only solve the global optimization problems effectively, but also address the parameter inversion problems of the date of sun shadow model location successfully. The results of numerical experiment and simulation experiment show that the CPSO algorithm has higher accuracy and faster convergence than the-state-of-the-art techniques. It can effectively improve the computing accuracy and computing efficiency of the global optimization problems, and also provide a novel method to solve the problems of integer parameter inversion in real life.


Author(s):  
Na Geng ◽  
Zhiting Chen ◽  
Quang A. Nguyen ◽  
Dunwei Gong

AbstractThis paper focuses on the problem of robot rescue task allocation, in which multiple robots and a global optimal algorithm are employed to plan the rescue task allocation. Accordingly, a modified particle swarm optimization (PSO) algorithm, referred to as task allocation PSO (TAPSO), is proposed. Candidate assignment solutions are represented as particles and evolved using an evolutionary process. The proposed TAPSO method is characterized by a flexible assignment decoding scheme to avoid the generation of unfeasible assignments. The maximum number of successful tasks (survivors) is considered as the fitness evaluation criterion under a scenario where the survivors’ survival time is uncertain. To improve the solution, a global best solution update strategy, which updates the global best solution depends on different phases so as to balance the exploration and exploitation, is proposed. TAPSO is tested on different scenarios and compared with other counterpart algorithms to verify its efficiency.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


2018 ◽  
Vol 6 (6) ◽  
pp. 346-356
Author(s):  
K. Lenin

This paper projects Volition Particle Swarm Optimization (VP) algorithm for solving optimal reactive power problem. Particle Swarm Optimization algorithm (PSO) has been hybridized with the Fish School Search (FSS) algorithm to improve the capability of the algorithm. FSS presents an operator, called as collective volition operator, which is capable to auto-regulate the exploration-exploitation trade-off during the algorithm execution. Since the PSO algorithm converges faster than FSS but cannot auto-adapt the granularity of the search, we believe the FSS volition operator can be applied to the PSO in order to mitigate this PSO weakness and improve the performance of the PSO for dynamic optimization problems. In order to evaluate the efficiency of the proposed Volition Particle Swarm Optimization (VP) algorithm, it has been tested in standard IEEE 30 bus test system and compared to other reported standard algorithms.  Simulation results show that Volition Particle Swarm Optimization (VP) algorithm is more efficient then other algorithms in reducing the real power losses with control variables are within the limits.


Sign in / Sign up

Export Citation Format

Share Document