Fault Diagnosis for Temperature Signal of Turbine Blade Based on LS-SVM

2013 ◽  
Vol 385-386 ◽  
pp. 580-584 ◽  
Author(s):  
Li Wei Chen ◽  
Chen Dong Wang

This document discusses the support vector machine (SVM) algorithm, then discusses least squares support vector machine (LS-SVM) algorithm, at the same time, the applications of SVM in the fault diagnosis of temperature signal of turbine blade being discussed, the least squares support vector machine algorithm being used in the research of fault diagnosis, being compared with LVQ neural network, experiments result show the operation speed of the least squares support vector machine algorithm is fast, its generalization ability is stronger, SVM can solve small sample learning problems as well as no-linear, high dimension and local minimization problems in the fault diagnosis of temperature signal of turbine blade.

Author(s):  
Hammam Tamimi ◽  
Dirk Söffker

This paper investigates modeling of flexible structures by means of the least squares support vector machine (LS-SVM) algorithm. Modeling is the first step to obtain a suitable model-based controller for any given system. Accurate modeling of a flexible structure based on experimental data using LS-SVM algorithm requires less knowledge about the physical system. Least squares support vector machine algorithm can achieve global and unique solution when compared with other soft computing algorithms. Also, LS-SVM algorithm requires less training time. In this paper, the successful use of support vector machine algorithm to model the flexible cantilever is demonstrated. The acquired model is able to provide accurate prediction of the system output under different operating conditions. Experimental results demonstrate the efficiency and high precision of the proposed approach.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Lijun Wang ◽  
Shengfei Ji ◽  
Nanyang Ji

This paper presents a method that combines Shuffled Frog Leaping Algorithm (SFLA) with Support Vector Machine (SVM) method in order to identify the fault types of rolling bearing in the gearbox. The proposed method improves the accuracy of fault diagnosis identification after processing the collected vibration signals through wavelet threshold denoising. The global optimization and high computational efficiency of SFLA are applied to the SVM model. Simulation results show that the SFLA-SVM algorithm is effective in fault diagnosis. Compared with SVM and Particle Swarm Optimization SVM (PSO-SVM) algorithms, it is demonstrated that the SFLA-SVM algorithm has the advantages of better global optimization, higher accuracy, and better reliability of diagnosis. Its accuracy is further improved through the integration of the wavelet threshold denoising method.


2019 ◽  
Vol 9 (2) ◽  
pp. 224 ◽  
Author(s):  
Siyuan Liang ◽  
Yong Chen ◽  
Hong Liang ◽  
Xu Li

Permanent magnet synchronous motors (PMSM) has the advantages of simple structure, small size, high efficiency, and high power factor, and a key dynamic source and is widely used in industry, equipment and electric vehicle. Aiming at its inter-turn short-circuit fault, this paper proposes a fault diagnosis method based on sparse representation and support vector machine (SVM). Firstly, the sparse representation is used to extract the first and second largest sparse coefficients of both current signal and vibration signals, and then they are composed into four-dimensional feature vectors. Secondly, the feature vectors are input into the support vector machine for fault diagnosis, which is suitable for small sample. Experiments on a permanent magnet synchronous motor with artificially set inter-turn short-circuit fault and a normal one showed that the method is feasible and accurate.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092204
Author(s):  
Yan Lu ◽  
Zhiping Huang

Gear pump is the key component in hydraulic drive system, and it is very significant to fault diagnosis for gear pump. The combination of sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine is proposed for fault diagnosis of gear pump in this article. Sparsity empirical wavelet transform is used to obtain the features of the vibrational signal of gear pump, the sparsity function is potential to make empirical wavelet transform adaptive, and adaptive dynamic least squares support vector machine is used to recognize the state of gear pump. The experimental results show that the diagnosis accuracies of sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine are better than those of the empirical wavelet transform and adaptive dynamic least squares support vector machine method or the empirical wavelet transform and least squares support vector machine method.


Sign in / Sign up

Export Citation Format

Share Document