ε-Uniform Convergence of the Hybrid Difference Scheme on the Shishkin Mesh for Singularly Perturbed Problems

2013 ◽  
Vol 392 ◽  
pp. 214-217 ◽  
Author(s):  
Quan Zheng ◽  
Xiao Li Feng ◽  
Xue Zheng Li

In this paper, we discuss the hybrid difference scheme on the Shishkin mesh for the singularly perturbed problems in 2-D. The ε-uniform pointwise convergence is proved by the comparison principle and barrier functions. The experiments support the theoretical result.

Author(s):  
Sheetal Chawla ◽  
Jagbir Singh ◽  
Urmil

In this paper, a coupled system of [Formula: see text] second-order singularly perturbed differential equations of reaction–diffusion type with discontinuous source term subject to Dirichlet boundary conditions is studied, where the diffusive term of each equation is being multiplied by the small perturbation parameters having different magnitudes and coupled through their reactive term. A discontinuity in the source term causes the appearance of interior layers on either side of the point of discontinuity in the continuous solution in addition to the boundary layer at the end points of the domain. Unlike the case of a single equation, the considered system does not obey the maximum principle. To construct a numerical method, a classical finite difference scheme is defined in conjunction with a piecewise-uniform Shishkin mesh and a graded Bakhvalov mesh. Based on Green’s function theory, it has been proved that the proposed numerical scheme leads to an almost second-order parameter-uniform convergence for the Shishkin mesh and second-order parameter-uniform convergence for the Bakhvalov mesh. Numerical experiments are presented to illustrate the theoretical findings.


2015 ◽  
Vol 20 (5) ◽  
pp. 641-657 ◽  
Author(s):  
Carmelo Clavero ◽  
Jose Luis Gracia ◽  
Grigorii I. Shishkin ◽  
Lidia P. Shishkina

We consider the numerical approximation of a 1D singularly perturbed convection-diffusion problem with a multiply degenerating convective term, for which the order of degeneracy is 2p + 1, p is an integer with p ≥ 1, and such that the convective flux is directed into the domain. The solution exhibits an interior layer at the degeneration point if the source term is also a discontinuous function at this point. We give appropriate bounds for the derivatives of the exact solution of the continuous problem, showing its asymptotic behavior with respect to the perturbation parameter ε, which is the diffusion coefficient. We construct a monotone finite difference scheme combining the implicit Euler method, on a uniform mesh, to discretize in time, and the upwind finite difference scheme, constructed on a piecewise uniform Shishkin mesh condensing in a neighborhood of the interior layer region, to discretize in space. We prove that the method is convergent uniformly with respect to the parameter ε, i.e., ε-uniformly convergent, having first order convergence in time and almost first order in space. Some numerical results corroborating the theoretical results are showed.


Sign in / Sign up

Export Citation Format

Share Document